DOI QR코드

DOI QR Code

The Photocatalytic Decompositions of 2-Chlorophenol on the Sn-impregnated Titania Nanoparticles and Nanotube

Sn 함침-티타니아 나노입자와 나노튜브에 놓인 2-Chlorophenol 광 분해 성능

  • Kim, Hyun Soo (Department of Chemistry, Yeungnam University) ;
  • Lee, Gayoung (Department of Chemistry, Yeungnam University) ;
  • Park, Sun-Min (Korean Institutes of Ceramic Engineering & Technology (KICET)) ;
  • Kang, Misook (Department of Chemistry, Yeungnam University)
  • Received : 2012.08.17
  • Accepted : 2012.09.12
  • Published : 2012.09.30

Abstract

This study focuses on the difference of photocatalytic activity depending on crystal structure type of nanoparticles ($TiO_2$) and nanotubes (TNT). The photodecomposition of 2-chlorophenol on the synthesized $TiO_2$, Sn-impregnated $TiO_2$, TNT, and Snimpregnated TNT were evaluated. The characteristics of the synthesized photocatalyts, TNT, Sn/TNT, $TiO_2$, and Sn/$TiO_2$ were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Visible spectroscopy (UV-Vis), and cyclic voltammeter (CV). The water-suspended 2-chlorophenol photodegradation over $TiO_2$ (anatase structure) catalyst was better than that over pure TNT. Particularly, the water-suspended 2-chlorophenol of 10 ppm was perfectly decomposed within 4 h over Sn/$TiO_2$ photocatalyst.

Keywords

References

  1. B. Guieysse, C. Hort, V. Platel, R. Munoz, M. Ondarts, and S. Revah, "Biological Treatment of Indoor Air for VOC Removal: Potential and Challenges," Biotechnol. Adv., 26 398-410 (2008). https://doi.org/10.1016/j.biotechadv.2008.03.005
  2. S. Santos, K. Jones, R. Abdul, J. Boswell, and J. Pacac, "Treatment of Wet Process Hardboard Plant VOC Emissions by a Pilot Scale Biological System," Biochem. Eng. J., 37 261-70 (2007). https://doi.org/10.1016/j.bej.2007.05.005
  3. S. H. Kwona and D. Cho, "A Comparative, Kinetic Study on Cork and Activated Carbon Biofilters for VOC Degradation," J. Ind. Eng. Chem., 15 129-35 (2009). https://doi.org/10.1016/j.jiec.2008.09.002
  4. Y. C. Chiang, P. C. Chiang, and C. P. Huang, "Effects of Pore Structure and Temperature on VOC Adsorption on Activated Carbon," Carbon, 39 523-34 (2001). https://doi.org/10.1016/S0008-6223(00)00161-5
  5. Y. H. Huang, Y. J. Huang, H. C. Tsai, and H. T. Chen, "Degradation of Phenol using Low Concentration of Ferric Ions by the Photo-fenton Process," J. Taiwan. Inst. Chem. E., 41 699-704 (2010). https://doi.org/10.1016/j.jtice.2010.01.012
  6. G. B. Ortiz de la Plata, O. M. Alfano, and A. E. Cassano, "Decomposition of 2-chlorophenol Employing Goethite as Fenton Catalyst II: Reaction Kinetics of the Heterogeneous Fenton and Photo-fenton Mechanisms," Appl. Catal. BEnviron., 95 14-25 (2010). https://doi.org/10.1016/j.apcatb.2009.12.006
  7. J. M. Monteagudo, A. Dura'n, and C. Lo'pez-Almodo'var, "Homogeneus Ferrioxalate-assisted Solar Photo-fenton Degradation of Orange II Aqueous Solutions," Appl. Catal. B-Environ., 83 46-55 (2008). https://doi.org/10.1016/j.apcatb.2008.02.002
  8. M. P. Moya, M. Graells, L. J. del Valle, E. Centelles, and H. D. Mansilla, "Fenton and Photo-fenton Degradation of 2- Chlorophenol: Multivariate Analysis and Toxicity Monitoring," Catal. Today, 124 163-71 (2007). https://doi.org/10.1016/j.cattod.2007.03.034
  9. Ch. Boughelouma and A. Messalhib, "Photocatalytic Degradation of Benzene Derivatives on $TiO_2$ Catalyst," Physics. Procedia., 2 1055-58 (2009). https://doi.org/10.1016/j.phpro.2009.11.062
  10. Y. H. Chena, L. L. Chen, and N. C. Shang, "Photocatalytic Degradation of Dimethyl Phthalate in an Aqueous Solution with Pt-doped $TiO_2$-coated Magnetic PMMA Microspheres", J. Hazard. Mater., 172 20-29 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.122
  11. M. A. Barakat, H. Schaeffera, G. Hayesa, and S. Ismat-Shah, "Photocatalytic Degradation of 2-Chlorophenol by Codoped $TiO_2$ Nanoparticles," Appl. Catal. B-Environ., 57 23- 30 (2005). https://doi.org/10.1016/j.apcatb.2004.10.001
  12. D. N. Bui, S. Z. Kang, X. Li, and Jin Mu, "Effect of Si Doping on the Photocatalytic Activity and Photoelectrochemical Property of $TiO_2$ Nanoparticles," Catal. Commun., 13 14-7 (2011). https://doi.org/10.1016/j.catcom.2011.06.016
  13. I. C. Flores, J. N. de Freitas, C. Longo, M. A. de Paoli, H. Winnischofer, and A. F. Nogueira, "Dye-sensitized Solar Cells Based on $TiO_2$ Nanotubes and a Solid-state Electrolyte," J. Photoch. Photobio. A., 189 153-60 (2007). https://doi.org/10.1016/j.jphotochem.2007.01.023
  14. R. Vinu and G. Madras, "Photocatalytic Activity of Ag-substituted and Impregnated Nano-$TiO_2$," Appl. Catal. A - Gen., 366 130-40 (2009). https://doi.org/10.1016/j.apcata.2009.06.048
  15. R. Enederson, I. P. Diego, H.Z. dos S. Joao, B.C. P. Sibele, and G. P. Fabio, "Bentonites Impregnated with $TiO_2$ for Photodegradation of Methylene Blue," Appl. Clay. Sci., 48 602- 06 (2010). https://doi.org/10.1016/j.clay.2010.03.010
  16. K. P. Yu, W. Y. Yu, M. C. Kuo, Y. C. Liou, and S. H. Chien, "Pt/titania-nanotube: A Potential Catalyst for $CO_2$ Adsorption and Hydrogenation," Appl. Catal. B-Environ., 84 112- 18 (2008). https://doi.org/10.1016/j.apcatb.2008.03.009
  17. B. S. Kwak, H. Choi, J. Woo, J. Lee, J. An, S. G. Ryu, and Misook Kang, "Photo-electrochemical Hydrogen Production Over P- and B- Incorporated $TiO_2$ Nanometer Sized Photo-Catalysts," Clean Tech., 17 [1] 78-82 (2011).
  18. S. Ken, O. Yuya, U. Hiroaki, H. Eiji, Z. Haoshen, and I. Hiroaki, "Aqueous Solution Synthesis of SnO Nanostractures with Tuned Optical Absorption and Photoelectrochemical Properties through Morphological Evolution," J. Roy. Soc. Chem., 2 2424-30 (2010).