DOI QR코드

DOI QR Code

Biodegradation Characteristics of Monochlorophenols by Wood Rot Fungi

Monochlorophenol의 목질분해균에 의한 분해 특성

  • Choi, In-Gyu (Dept. of Forest Products, Korea Forest Research Institute) ;
  • Lee, Jae-Won (Dept. of Forest Products, Korea Forest Research Institute) ;
  • Choi, Don-Ha (Dept. of Forest Products, Korea Forest Research Institute)
  • Published : 2002.12.31

Abstract

Biodegradation of monochlorophenols by wood rot fungi such as Daldina concentrica, Trametes versicolor and Pleurotus ostreatus was evaluated by determining their resistance or toxic test and biodegradability. The metabolites of monochlorophenols were also analyzed. Among the three fungi, T. versicolor was the most resistant to 200 ppm of 2-, 3- and 4-chlorophenols, and did not show any inhibitory mycellium growth. But D. concentrica had a little inhibition effect at more than 100 ppm of 3- or 4-chlorophenol. Control cultures of P. ostreatus took even 14 days far the completion of mycellium growth, but the hyphal growth was improved when 2- or 3-chlorophenol were added to the culture. In biodegradation analysis, P. ostreatus showed the highest degradation of 2- or 3-chlorophenol, while T. versicolor was the most effective in 4-chlorophenol. D. concentrica and P. ostreatus slowly degraded 4-chlorophenol. However, T. versicolor had similar degradation capability in the three monochlorophenols, suggesting that the biode- gradation nude is dependent on the fungi as well as the type of monochlorophenol. Several metabolites such as 1,3,5-trihydroxyl benzene, 1-ethyl-1-hydroxyl pentane, 2-propenoicacid, methylmalonic acid and 2-methyl-4-keto-pentan-2-ol were found as products of primary oxidation of 2-, 3- and 4-chlorophenols by intact fungal cultures. fatty acids including tetradecanoic, heptadecanoic and octadecanoic acids were also detected The order of increase of mycellium weight during incubation were P. ostreatus > T. versicolor > D. concentrica. The pH in the culture was not constantly changed depending on incubation days, but the mycellium weight was slightly increased, indicating that the biodegradation of monochlorophenol might have low relationship with the mycellium growth Laccase activities of T. versicolor and P. ostreatus were continuously increased depending on the incubation days, suggesting that the ligninolytic enzyme activity play an important role in the biodegradation of monochlorophenol.

Monochlorophenol인 2-, 3- 및 4-chlorophenol에 대해서 D. concentrica, T. versicolor, P. ostreatus 3균주를 이용하여 저항성, 분해능, 분해산물 등을 비교 분석하였다. T. versicolor는 monochlorophenol의 종류 및 농도의 증가에 따라 전혀 영향을 받지 않고 균사 생장이 이뤄지며, D. concentrica는 3-, 4-chlorophenol에서 100 mg/L 이상으로 농도가 증가하면 균사 생장이 느려져 제한을 받고 있는 것으로 나타났다. P. ostreatus는 두 균주와 달리 대조구 자체의 생장이 14일 정도로 상당히 느렸으나 2-, 3-chlorophenol을 첨가했을 때 오히려 1$\sim$2일 정도씩 생장이 촉진되는 결과를 나타냈다. 2-Chloro- phenol 이나 3-chlorophenol에서는 P. ostreatus가 제일 우수한 분해능을 보였으며 4-chlorophenol의 경우는 T. versicolor가 2균주에 비하여 월등하게 우수하게 나타나 균주에 따른 mono- chlorophenol의 분해능에 있어서 차이가 있고, 염소의 치환 위치에 따라 ortho나 meta 보다는 para 위치에 염소가 치환된 4-chlorophenol이 D. concentrica나 P. ostreatus의 경우 분해가 느린 것으로 나타났다. 그러나 T. versicolor는 2-, 3- 및 4-chlorophenol의 저항성 시험에서 균사 생장이 제한을 받지 않고 우수한 생장력을 갖고 있는 것처럼 분해능 시험에 있어서도 우수하였다. 균주별로 pH와 균사량은 P. ostreatus > T. versicolor > D. concentrica 순으로 높았으며, 균주내에서 배양일수별로 pH의 변이는 유동적이었고 균사량은 조금씩 증가하였으나 뚜렷한 차이는 없었다. 즉, 2-, 3- 또는 4-chlorophenol의 목질분해균을 이용한 분해에 있어서 pH 및 균사량은 monochlorophenol의 분해능과는 상관관계가 낮은 것으로 나타났다. T. versicolor와 P. ostreatus의 경우는 높은 laccase의 유도 효과를 나타내면서 monochlorophenol의 분해에 영향을 주는 것으로 생각된다. Monochlorophenol의 분해산물로는 1,3,5-trihydroxyl benzene, 1-ethyl-1-hydroxyl poltane, 2-pro-penoicacid, methylmalonic acid, 2-methyl-4-keto-pentan-2-ol 등과 지방산의 일종인 tetradecanoic acid, hexadecane, hept-adecanoic acid, octadecanoic acid 등이 확인되었다.

Keywords

References

  1. Rochkind-Dubinsky, M. L., Sayler, G. S. and Blackburn, J. W. (1987) Microbiological decomposition of chlorinated aromatic compounds, Marcel Dekker Inc., NY and Basel, p.73-107
  2. Sierra-Alvarez, R., Field, J. A., Kortekaas, S. and Lettinga, G. (1994) Overview of the anaerobic toxicity caused by organic forest industry wastewater pollutants, Wat. Sci. Technol. 29, 353-363
  3. Huynh, V., Chang, H., and Joyce, T. (1985) Dechlorination of chloroorganics by a whiterot fungi, Tappi Journal 68(7), 98-102
  4. Krumm, M. L., and Boyd, S. A. (1988) Reductive dechlorination of chlorinated phenols in anaerobic upflow bioreactors, Wat. Res. 22, 171-177 https://doi.org/10.1016/0043-1354(88)90075-9
  5. Roy-Arcand, L. and Archibald, F. S. (1991) Direct dechlorination of chlorphenolic compounds by laccase from Trametes(Coriolus) versicolor, Enzyme Microb. Technol. 13, 194-203
  6. Kubatova, A., Erbanova, P., Eichlerova, I., Homolka, L., Nerud, F. and Sasek, V.(2000) PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil, Chemosphere. 43, 207-215 https://doi.org/10.1016/S0045-6535(00)00154-5
  7. Ruttimann, J. C. and Lamar, R T. (1996) Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignindegrading enzymes, Appl. Environ. Microbiol. 62, 3890-3893
  8. Leonitevsky, A. A., Myasoedova, N. M., Baskunov, B. P., Evans, C. S. and Golovleva, L. A. (2000) Transformation of 2,4,6-trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor, Biodegradation. 11, 331-340 https://doi.org/10.1023/A:1011154209569
  9. 尹藤弘道, 本田与一, 渡辺降可, 桑原正章 (1998) 食用擔子 菌を用いたバイオレメデ イエ一シヨンに關する硏究 -ヒラタケによる鹽素化フェノ一ルの分解, 日本木村學會大會硏究發表要旨集, 501
  10. Katayame, H. (1994) Biodegradation of phenol and monochlorophenols by yeast Rhodotorula glutinis, Wat. Sci. Tech. 30, 59-66
  11. Chang, B. V., Wu, W. B. and Yuan, S. Y. (1997) Biodegradation of benzene, toluene, and other aromatic compounds by Pseudomonas sp. D8, Chemosphere. 35, 2807-2815 https://doi.org/10.1016/S0045-6535(97)00281-6
  12. Mileski, G. J., Bumpus, J. A., Jurek, M. A. and Aust, S. D. (1988) Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 59, 1779-1785
  13. Valli, K. and Gold, M. (1991) Degradation of 2,4-dichlorophenol by the lignindegrading gungus Phanerochaete chrysosporium, J. Bacterial. 173, 345-352 https://doi.org/10.1128/jb.173.1.345-352.1991
  14. Alleman, B. C., Logan, B. and Gibertson, R. L. (1992)Toxicity of pentachlorophenol to six species of white rot fungi as a function of chemical dose, Appl. Environ. Microbiol. 58, 4048-4050
  15. Reddy, G. V. B., Gelpke, M. D. S. and Gold, M. H. (1998) Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium : involvement of recductive dechlorination, J. Bacteriol. 180, 5159-5164
  16. Armenante, P. M., Pal, N. and Lewandowski, G. (1994) Role of mycelium and extracellular protein in the biodegradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium, Appl. Environ. Microbiol. 60, 1711-1718
  17. Shuttleworth, K. L. and Bollag, J. M. (1986) Soluble and immobilized laccase as catalysts for the transformation of substituted phenols, Enzyme Microb. Technol. 8, 171-177 https://doi.org/10.1016/0141-0229(86)90108-0
  18. Ruggiero, P., Sarkar, J. M. and Bollag, J. M. (1989) Detoxification of 2,4,-dichlorophenol by a laccase immobilized on soil or clay, Soil Science. 147, 361-370 https://doi.org/10.1097/00010694-198905000-00007
  19. Iimura, Y., Hartikainen, P. and Tatsumi, K. (1996) Dechlorination of tetrachloroguaiacol by laccase of white rot basidiomycete Coriolus versicolor, Appl. Microbiol. Biotechrol. 45, 434-439 https://doi.org/10.1007/s002530050709
  20. Tien, M., and Kirk T. K. (1984) Ligninde-grading enzyme from Phanerochaete chrysosporium: purification, characterization and catalytic properties of an unique $H_2O_2$-requiring oxygenase, Proc. Natl. Acad. Sci. USA 81, 2280-2284 https://doi.org/10.1073/pnas.81.8.2280
  21. 최인규, 안세희 (1998) 목질분해균에 의한 Pentachloro-phenol의 미생물분해, 한국목재공학회, 26(3), 53-62
  22. 최인규 (1999) Biodegradation of Chlorinated Phenols, Pentachlorophenol and 4,5,6-Trichloroguaiacol, by LigninDegrading Basidiomycetes, Grammothele fuligo, and Phanerochaete crassa, 산림과학논문집, 62, 53-66

Cited by

  1. Dibutyl phthalate biodegradation by the white rot fungus,Polyporus brumalis vol.97, pp.6, 2007, https://doi.org/10.1002/bit.21333