DOI QR코드

DOI QR Code

Preliminary Nitrogen Removal Rates in Close-to-Nature Constructed Stream Water Treatment Wetland

하천수정화 근자연형 인공습지의 초기 질소제거

  • Yang, Hong-Mo (Dept, of Landscape Architecture, College of Agriculture and Life Science, Chonnam National University)
  • Published : 2002.12.31

Abstract

A 0.19 hectare stream water purification demonstration wetland was constructed and planted with cattails from April 2001 to May 2001. Some portions of its bottom surfaces adjacent to levees have a variety of slope of 1:4 $\sim$ 1:15 and two small open water areas were installed in the wetland. These make its shape closer to a natural wetlant Nitrogen removal was a major objective of the wetlant Waters of Sinyang Stream flowing into Kohung Esturiane Lake located southern coastal region of Korean Peninsula were pumped and funneled into it. Volumes and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Average inflow and outflow were 120 $m^3/d$ and 112 $m^3/d$, respectively. Hydraulic retention time was about 3.1 days. Average nitrate and total nitrogen removal rate for the early stage of the wetlands were 85.8 $mg/m^2/day$, 171.4 $mg/m^2/day$ respectively. Full establishment of cattails within a few years can develope litter-soil substrates and supply available carbon sources beneficial to the denitrification of nitrate. These can lead to increases of the nitrate retention rate. Short circuiting and dead zone areas which might be occurred due to the close-to-nature layout of the wetland were not observed during the monitoring period.

근자연형 인공습지에 식재한 부들이 거의 죽지 않고 활착하였으며, 7월부터 새줄기가 일부 나오기 시작하였다. 부들의 활착과 성장은 양호한 편이었다. 개수부에는 부들의 새줄기가 나오지 않았다. 조사기간 인공습지의 평균 $NO_3-N$와 평근 TN 제거율은 각각 85.8 $mg/m^2/day$, 174.4 $mg/m^2/day$를 나타냈다. 북미에서 운영중인 인공습지의 평균$NO_3-N$ 제거율 125 mg $N/m^2/day$와 평균 TN 제거율 513 mg $N/m^2/day$ 보다는 다소 낮다. 이들 북미습지는 조성 후 수년이 지나 습지의 기질층이 $NO_3-N$ 및 TN 제거에 양호한 조건을 갖춘 습지들이다. 본 연구 인공습지의 조사기간이 조성 후 초기이고, 조사기간에 겨울철 일부 기간이 포함되어 있는 점을 고려하면 $NO_3-N$과 TN제거율이 양호한 편이라 사료된다. 본 연구습지의 부들이 2$\sim$3년 후 개수부 이외의 습지를 완전히 덮고, 부들의 잔재물이 습지바닥에 쌓여 탈질화에 필요한 탄소공급원의 역할을 하면 $NO_3-N$ 및 TN 제거율이 높아질 것으로 사료된다. 기존의 인공습지는 수질정화 측면을 강조하여 일정한 수심유지와 유입수의 단기이동 방지를 위해 습지바닥을 수평으로 균일하게 조성하여 왔다. 최근 들어 인공습지 설계에서 친환경적인 측면이 강조되는 추세이다. 본 근자연형 인공습지는 제방에 면한 습지바닥의 일부에 완만한 경사를 두고 습지외곽의 모습을 타원형으로 조성하여 자연습지의 모습과 가급적 유사한 모습으로 조성하였다. 초기 조사분석결과 질소정화가 정상적으로 이루어지고 있어, 습지일부에 완만한 경사를 도입하여 자연습지와 유사한 모습으로 수질정화 인공습지의 조성이 가능할 것으로 사료된다.

Keywords

References

  1. 양흥모 (1999) 수자원보전을 위한 점원 및 비점원 오염물의 자연생태적 친환경적처리 인공습지 및 연못-습지 시스템, 한국수자원학회지, 32(5), 111-123
  2. 양흥모(2001) 담수호 수자원보전을 위한 수질정화 연못-습지 시스템의 초기처리수준, 한국환경복원녹화기술학회지, 4(4), 64-71
  3. :Mitsch, W. J., Horne, Alex J., Nairn, R W., C (2000), Nitrogen and phosphorus retention in wetlandsecological approaches to solving excess nutrient problems, Ecol. Eng. 14, 1-7 https://doi.org/10.1016/S0925-8574(99)00015-4
  4. Kadlec, R. and Knight, R., C. (1996) Treatment Wetlands. CRC Press, Boca Raton, FL. Kessler, E., Jansson, M, eds. 1994. Wetlands and lakes as nitrogen traps, Special Issue of Ambio 23, 319-386
  5. Brodrick, S. J., Cullen, P. and Maher, W. (1987) Denitrification in a natural wetland receiving secondary treated effluent, Water Res. 65, 432-439
  6. Stengel, E., Carduck, W. and Jebsen, C., (1987) Evidence for denitrification in artificial wetlands. In: Reddy, K. R. and Smith, W. H. Editors, 1987, Aquatic Plants for Water Treatment and Resource Recovery Magnolia Publishing, Orlando, FL, p.543-550
  7. Brix, H. and Schierup, H. (1989) The use of aquatic macrophytes in water-pollution control, Ambio 18, 100-107
  8. 환경부(2000) 수질오염공정시험방법
  9. Phipps, R. G. and Crumpton, W. G. (1994) Factors affecting nitrogen loss in experimental wetlands with different hydrologic loads, Ecol. Eng. 3, 399-408 https://doi.org/10.1016/0925-8574(94)00009-3
  10. Seitzinger, S. P. (1988) Dentrification in freshwater and coastal marine systems: ecological and geochemical significance, Limnol. Oeeanogr. 33, 702-724 https://doi.org/10.4319/lo.1988.33.4_part_2.0702
  11. CH2MHill (1998) North American Treatment Wetland Data-base, Version 2 Draft. Prepared for the United States Environmental Protection Agency (EPA)Environment Technology Initiative (ETl)
  12. Bachand, P. A. M. and Horne, A. J. (2000a) Denitrification in constructed freewater surface wetlands. 1. Very high nitrate removal rates in a macrocosm study, Ecol. Eng. 14, 9-15
  13. Broadbent, F. E. and Clark, F. E. (1965) Denitrification, Agronomy 10, 344
  14. Zhu, T. and Sikora, F. J. (1994) Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands, In: Proc. 4th Int. Conf. on Wetland System; for Water Pollution Control. Guangzhou, Clrina, p.355-366
  15. Phipps, R. G., Crumpton W. G., (1994) Factors affecting nitrogenloss in experimental wetlands with different hydrologicloads, Ecol. Eng. 3, 399-400 https://doi.org/10.1016/0925-8574(94)00009-3
  16. Brodrick, S. J., Cullen P. and Maher, W., (1988) Denitrification in a natural wetland receiving secondary treated effluent, Water Res. 22, 431-439 https://doi.org/10.1016/0043-1354(88)90037-1
  17. Mitsch, W. J. and Gosselink, J. G. (1993) Wetlands, 2nd ed. Van Nostrand Reinhold (now J. Wiley & Sons), New York
  18. US Environmental Protection Agency (1975) Process Design Manual for Nitrogen Control. October 1975
  19. Yang. H. M. (1992) Ecological design of estuarine environment for a sustainable urban· ecosystem, PhD Dissertation, University of California Berkeley
  20. Bachand, P. A. M. and Horne, A. J. (2000a) Denitrification in constructed freewater surface wetlands, I. Very high nitrate removal rates in a macrocosm study, Ecol. Eng. 14, 9-15
  21. Bachand, P. A. M. and Horne, A. J. (2000b) Denitrification in constructed freewater surface wetlands, II. Effects of vegetation and temperature, Eol. Eng. 14, 17-32
  22. Reilly, J. F., Horne, A. J. and Miller, C. D. (2000) Nitrate. removal from a drinking water supply with large freesurface constructed wetlands prior to groundwater recharge, Ecol. Eng. 14, 33-47 https://doi.org/10.1016/S0925-8574(99)00018-X
  23. Satoris, J. J., Thullen, J. S., Barber, L. B. and Salas, D. E. (2000) Investigation of nitrogen transformations in a southern California constructed wastewater treatment wetland, Ecol. Eng. 14, 33-48 https://doi.org/10.1016/S0925-8574(99)00018-X
  24. Spieles, D. J. and Mitsch, W. J. (2000) The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: A comparison of low and high nutrient riverine system;, Ecol. Eng. 14, 77-91
  25. Phipps, R. G. and Crumpton W. G. (1994) Factors affecting nitro-genloss in experimental wetlands with different hydrologicloads, Ecol. Eng. 3, 399-400 https://doi.org/10.1016/0925-8574(94)00009-3

Cited by

  1. Evaluation of treatment efficiencies of pollutants in daecheong lake juwon stream constructed wetlands vol.29, pp.2, 2015, https://doi.org/10.11001/jksww.2015.29.2.211
  2. The List of Vascular Plants at Junam Wetland in Changwon City vol.15, pp.2, 2013, https://doi.org/10.5532/KJAFM.2013.15.2.067
  3. Ecotoxicity Assessment for Livestock Waste Water Treated by a Low Impact Development (LID) Pilot Plant vol.35, pp.4, 2017, https://doi.org/10.11626/KJEB.2017.35.4.662