• Title/Summary/Keyword: chemical testing

Search Result 831, Processing Time 0.025 seconds

Safety assessment of biological nanofood products via intelligent computer simulation

  • Zhao, Yunfeng;Zhang, Le
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.121-134
    • /
    • 2022
  • Emerge of nanotechnology impacts all aspects of humans' life. One of important aspects of the nanotechnology and nanoparticles (NPs) is in the food production industry. The safety of such foods is not well recognized and producing safe foods using nanoparticles involves delicate experiments. In this study, we aim to incorporate intelligent computer simulation in predicting safety degree of nanofoods. In this regard, the safety concerns on the nano-foods are addressed considering cytotoxicity levels in metal oxides nanoparticles using adaptive neuro-fuzzy inference system (ANFIS) and response surface method (RSM). Three descriptors including chemical bond length, lattice energy and enthalpy of formation gaseous cation of 15 selected NPs are examined to find their influence on the cytotoxicity of NPs. The most effective descriptor is selected using RSM method and dependency of the toxicity of these NPs on the descriptors are presented in 2D and 3D graphs obtained using ANFIS technique. A comprehensive parameters study is conducted to observe effects of different descriptors on cytotoxicity of NPs. The results indicated that combinations of descriptors have the most effects on the cytotoxicity.

Halide Perovskites for X-ray Detection: The Future of Diagnostic Imaging

  • Nam Joong Jeon;Jung Min Cho;Jung-Keun Lee
    • Progress in Medical Physics
    • /
    • v.33 no.2
    • /
    • pp.11-24
    • /
    • 2022
  • X-ray detection has widely been applied in medical diagnostics, security screening, nondestructive testing in the industry, etc. Medical X-ray imaging procedures require digital flat detectors operating with low doses to reduce radiation health risks. Recently, metal halide perovskites (MHPs) have shown great potential in high-performance X-ray detection because of their attractive properties, such as strong X-ray absorption, high mobility-lifetime product, tunable bandgap, low-temperature fabrication, near-unity photoluminescence quantum yields, and fast photoresponse. In this paper, we review and introduce the development status of new perovskite X-ray detectors and imaging, which have emerged as a new promising high-sensitivity X-ray detection technology. We discuss the latest progress and future perspective of MHP-based X-ray detection in medical imaging. Finally, we compare the conventional detection methods with quantum-enhanced detection, pointing out the challenges and perspectives for future research directions toward perovskite-based X-ray applications.

A Study on the development and calibration method of a modular internal resistance meter to improve the safety of reusable batteries

  • Mi-Jin Choi;Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.228-235
    • /
    • 2024
  • Battery use is increasing worldwide to achieve carbon neutrality and improve energy efficiency, but batteries are a finite resource and their application is determined by capacity and specifications. Battery performance deteriorates as the number of uses increases. A certain level of battery performance degradation has become an issue in the field of reuse and recycling, and various studies are being conducted on reuse to solve power shortages. Waste batteries from electric vehicles are suitable for building ESS based on reusable batteries, and for stable use, technical skills are needed to accurately predict battery life and determine status information. Predicting battery life and determining status information are difficult due to non-linearity due to internal structure or chemical changes. In this paper, we manufactured a modular internal resistance measuring device and compared the measured values with Hioki equipment to minimize the error rate through a correction method. As a result of testing Hioki equipment and modular measuring instruments to ensure efficiency and safety based on reusable batteries, an accuracy of over 95% was confirmed.

Treatment of Waste Solution of Waste Refrigerant Decomposition Process Using Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 폐냉매 분해 공정 폐수 처리)

  • Ko, Eun Ha;Yoo, Hyeonseok;Jung, Yong-An;Park, Dong-Wha;Kim, Dong-Wook;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.479-483
    • /
    • 2018
  • Our group reported the thermal decomposition of R-22 ($CHClF_2$) refrigerants by nitrogen thermal plasma in previous studies. However, it was proposed that the wastewater generated from the end part of the process contains high concentration of fluoride ion which is a component of R-22. The additional post-treatment process to neutralize the $F^-$ ions in the wastewater was investigated in this study. The wastewater generated through the decomposition of R-22 with the same procedure in the previous work was treated using the neutralizer, $Ca(OH)_2$, and the atmospheric pressure plasma jet (APPJ) independently as a post-treatment process. Wastewater samples were collected directly after the treatment for ion-chromatography analysis to trace the change of the concentration of $F^-$ ion in the wastewater. The fluoride concentration in the wastewater showed the highest value when the single water was used as a neutralizer, and the concentration of fluoride in the wastewater was dramatically reduced when the post-treatments were performed.

Changes in Soil Properties and Rice Production as Influenced by the Consecutive Application of Liquid Swine Manure in Paddy Field (돈분 액비의 연용이 벼의 수량과 토양에 미치는 영향)

  • Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.2
    • /
    • pp.221-234
    • /
    • 2016
  • The application of animal manure on farm fields is one of the most economical ways. However, the continuous application of manure in paddy fields might change soil properties influencing the growth of rice plant. Thus, this study was conducted to investigate the changes in selected chemical and biological properties of soils and rice production as affected by the applications of two different fertilizer sources, which were the consecutive applications of liquid swine manure (LSM) and chemical fertilizer (CF), during the three experimental years, from 2012 to 2014. Application amount of LSM was based on 100% of nitrogen fertilizer recommendation rate for rice cultivation estimated by soil testing. Plant height and tiller number in rice at the first year of liquid swine manure manure plot were lower than those of chemical fertilizer plot. Height and tillers of rice in liquid swine manure plot were higher than those of rice in chemical fertilizer plot after consecutive application for 3 years. Rice yield In the first year of application was decreased by 7% than that of chemical fertilizer, but the yield of rice in the third year of application in LM 100% plot was increased by 8% compared to the chemical fertilizer. Toyo-taste value of milled rice in LM 100% was decreased by increasing of protein contents and decreasing rate of perfect grain. The K and Zn contents in the soil were increased in the plots of consecutive LSM application. The results implied that the liquid manure may neither decrease the yield of rice and nor increase soil properties except K and Zn in the soil, and decrease rice quality.

The Dispersibility and Adsorption Behaviour of Cement Paste with Molecular Structures of Polycarboxylates (폴리카복실레이트 분자 구조에 따른 시멘트페이스트의 분산 및 흡착 특성 연구)

  • Shin, Jin-Yong;Hong, Ji-Sook;Suh, Jeong-Kwon;Lee, Young-Seok;Hwang, Eui-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.489-496
    • /
    • 2006
  • Graft copolymerized polycarboxylate(PC)-type superplasticizers which have carboxylic acid with $\pi$ bond among the molecular structure and polyethyleneglycol methyl ether methacrylate(PMEM) were synthesized by free radical reaction. To investigate their chemical structures and molecular weights, PCs were analyzed by FT-IR(fourier transform spectrometer), C-NMR(nuclear magnetic resonance spectrometer) and GPC(gel permeation chromatograpy). When types of carboxylic acids(methacrylic acid, acrylic acid, maleic anhydride, and itaconic acid) and molar ratios of carboxylic acid/PMEM) were varied, adsorptive and fluid characteristics in cement paste were discussed. As the molar ratio of carboxylic acid/PMEM) was higher, amount adsorbed on the cement particles and the fluidity of cement paste by mini-slump spread testing method were increased. When main chain of PC was methacrylic acid, a larger amount was adsorbed on the cement particles. PCs with acrylic acid as main chain showed higher dispersing power. However, it was confirmed that PCs with dicarboxylic acids(maleic anhydride, itaconic acid) didn't have good adsorption and dispersibility.

EFFECT OF DENTURE BASE SURFACE PRETREATMENTS ON THE TENSILE BOND STRENGTH BETWEEN A RESILIENT LINER AND A PROCESSED DENTURE BASE RESIN (의치상 레진의 표면 전처리가 연성 이장재와의 인장결합강도에 미치는 영향)

  • Yoon, Min-Chul;Jeong, Chang-Mo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.621-632
    • /
    • 2007
  • Statement of problem: The failure of adhesion between the resilient denture liner and the denture base is a serious problem in clinic. Purpose: The purpose of this study was to evaluate the effect of denture base resin surface pretreatments (mechanical and/or chemical) on the tensile bond strength between a resilient liner and processed denture resin. Material and method. Acrylic-based resilient liners (Soft liner; GC co., Japan & Coe-Soft; GC America Inc. USA) and silicone-based resilient liners (Mucosoft, Parkell Inc., USA & Dentusil; Bosworth co., USA) were used. Specimens in each soft lining material were divided two groups with or without mechanical pretreatment. Each denture base specimen received 1 of 4 chemical pretreatments including: (1) no treatment, (2) 30-s acetone treatment, (3) 15-s methylene chloride treatment, (4) 180-s methyl methacrylate treatment. All specimens were thermocycled and placed under tension until failure in a universal testing machine. Results: 1. Silicone-based resilient liners exhibited significantly higher tensile bond strengths than acrylic-based resilient liners (P<.05). 2. Grinding the denture base resin improved tensile bond strengths of silicone-based resilient liners, but reduced tensile bond strengths of acrylic-based resilient liners (P<.05). 3. In acrylic-based resilient liners, treating with acetone significantly increased the bond strength of Soft liner and treating with methyl methacrylate significantly increased the bond strength of Coe-Soft (P<.05). However they were not effective compared to silicone-based resilient liner. 4. In silicone-based resilient liners, treating with all chemical etchants significantly increased the bond strength of Mucosoft to denture base, and treating with methylene chloride and methyl methacrylate increased the bond strength of Dentusil to denture base (P<.05). Conclusion: Although chemical and mechanical pretreatments were not effective on tensile bond strength of acrylic-based resilent liner to denture base, treating the denture base resin surface with appropriate chemical etchants after mechanical pretreatment significantly increased the tensile bond strength of silicone-based resilient liner to denture base.

Preparation of Azidated Polybutadiene(Az-PBD)/Ethylene-Vinyl Acetate Copolymer(EVA) Blends for the Application of Energetic Thermoplastic Elastomer (에너지함유 열가소성탄성체 적용을 위한 아지드화 폴리부타디엔/에틸렌-비닐아세테이트 공중합체 블렌드 제조)

  • Yoon, Sang Won;Choi, Myung Chan;Chang, Young-Wook;Noh, Si-Tae;Kwon, Soon Kil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.282-288
    • /
    • 2015
  • A new energetic thermoplastic elastomer based on the azidated polybutadiene(Az-PBD)/ethylene vinyl acetate copolymer (EVA) blends was prepared, and structure and properties of the blends were invetigated by SEM, DSC, DMA, tensile testing and combustion test. The Az-PBD was synthesized via a two-step process involving the addition reaction of commercially available 1,2-PBD with $Br_2$ and subsequent nucleophilic substitution reaction of the brominated PBD with $NaN_3$. EVA/Az-PBD with 90/10, 80/20, 70/30 (wt/wt) was prepared by a solution blending. SEM, DSC, and DMA results revealed that the blends are partially compatible and Az-PBD is dispersed in continuous EVA matrix. Tensile test showed that modulus and tension set increased while elongation-at-break of the blends decreased with increasing Az-PBD content in the blends, but all the blends showed a elongation at break as high as 700% and a tension set of less than 5%, indicating that the blends are typically elastomeric. Combustion test showed that, with increasing Az-PBD content in the blend, higher energy can be released.

A Study on Measurement of Internal Defects of Pressure Vessel by Digital Shearography(II) (전자 전단 간섭법을 이용한 압력용기의 내부결함 측정에 관한 연구(II) (전자 전단 간섭법을 이용한 압력용기의 내부결함 검출 시스템의 오차 분석))

  • Kang, Young-June;Park, Nak-Kyu;Ryu, Won-Jae;Kim, Dong-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.402-410
    • /
    • 2002
  • Recently the necessity of study on optical measuring method using laser to detect the pipeline's defect in nuclear facilities, chemical industries and power plants has been increased. Because laser light can be delivered to a remote area without any difficulties, the application of laser in many industries can solve several difficulties from the limitation of access in danger area and reduce the risks of workers. Therefore, we applied a new experimental technique to the measurement of internal defects in pressure vessels with the combination of shearography and image processing technique and detected the internal cracks of pressure vessels in the former paper. In this paper, we used the same optical system as in the former study and found the optimum shearing magnitude by comparing the real length of specimen with experimental results. A variety of conditions were applied to certify the validity of this method. Actually, several specimens which have different lengths and depths were used in this experiment under the three diverse pressure. Consequently, we have carried out this experiment to determine the limit of measurement ability with analyzing errors.

A Study on Measurement of Internal Defects of Pressure Vessel by Digital Shearography(I) (전자 전단 간섭법을 이용한 압력용기의 내부결함 측정에 관한 연구(I))

  • Kang, Young-June;Park, Nak-Kyu;Ryu, Won-Jae;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.393-401
    • /
    • 2002
  • Pipelines in power plants, nuclear facilities and chemical industries are often affected by corrosion effects. It is important to inspect the internal defects in pipelines in oder to guarantee safe operational condition. We have taken relatively much time, cost and manpower to use conventional NDT methods because these methods are contact measuring methods. In this paper, we used digital shearography, a laser-based optical method which allows full-field measurement of surface displacement derivatives. This method has many advantages in practical use, such as low sensitivity to environmental noise, simple optical configuration and real time measurement. The experiment was performed with pressure vessels which has different internal cracks and detected internal cracks in the pressure vessels at a real time using phase shifting method.