A Study on Measurement of Internal Defects of Pressure Vessel by Digital Shearography(II)

전자 전단 간섭법을 이용한 압력용기의 내부결함 측정에 관한 연구(II) (전자 전단 간섭법을 이용한 압력용기의 내부결함 검출 시스템의 오차 분석)

  • 강영준 (전북대학교 메카트로닉스 연구센터) ;
  • 박낙규 (전북대학교 대학원) ;
  • 유원재 (전북대학교 대학원) ;
  • 김동우 (전북대학교 기계항공시스템공학부)
  • Published : 2002.08.30

Abstract

Recently the necessity of study on optical measuring method using laser to detect the pipeline's defect in nuclear facilities, chemical industries and power plants has been increased. Because laser light can be delivered to a remote area without any difficulties, the application of laser in many industries can solve several difficulties from the limitation of access in danger area and reduce the risks of workers. Therefore, we applied a new experimental technique to the measurement of internal defects in pressure vessels with the combination of shearography and image processing technique and detected the internal cracks of pressure vessels in the former paper. In this paper, we used the same optical system as in the former study and found the optimum shearing magnitude by comparing the real length of specimen with experimental results. A variety of conditions were applied to certify the validity of this method. Actually, several specimens which have different lengths and depths were used in this experiment under the three diverse pressure. Consequently, we have carried out this experiment to determine the limit of measurement ability with analyzing errors.

산업 현장에서 사용되는 배관이나 압력용기의 결함 검출은 시설의 안정적 운용에 기본적이며 중요한 문제이다. 전자 전단 간섭법은 결함 검출에 사용되고 있는 기존의 비 광학적 검사방법에 대한 여러 가지 장점들 뿐 만 아니라 전자 전단 간섭법 외의 다른 광학적 방법보다 외란에 둔감하여 산업 현장 적용성이 비교적 높다는 장점을 가지고 있다. 이에 본 논문의 전편 "전자 전단 간섭법을 이용한 압력용기의 내부결함 측정에 관한 연구(I)"에서는 압력 용기에 내부에 존재하는 결함을 검출하는데 전자 전단 간섭법을 적용하여 보았으며 결함부의 변형률을 3차원으로 가시화 하였다. 이에 더하여 본 논문에서는 전편에서 구성한 광학계를 바탕으로 결합의 길이를 구하고 결항의 조건과 가압력 등의 변화를 주어 시스템의 오차를 분석하고 그 측정한계를 규정하기 위한 실험을 수행하였다.

Keywords

References

  1. R. W. Nichols, ‘In-service inspection as an aid to steel pressure vessel reliability,’ Reactor Inspection Technology, Proceeding of a BNES symposium, pp. 24-37, (1975)
  2. D. L Mader, ‘Holographic and nonholograpic NDT for nuclear and coal-fired power plants,’ SPIE, Vol. 604, Holographic Nondestructive Testing, pp. 37-56, (1986)
  3. W. J. McGonnagle, ‘Nondestructive testing,’ 2nd ed., McGraw-Hill, pp. 92-178, (1961)
  4. Ernest O. Doebelin, ‘Measurement systems; application and design,’ 4th eel, McGraw-Hill, pp. 251-253, (1974)
  5. A Ettemeyer, ‘Nondestructive Inspection with Shearography,’ SPIE Vol. 2248, pp. 222-228, (1994)
  6. W. Steinchen, L. Yang, ‘Nondestructive testing of micro-cracks using digital speckle pattern shearing interferometry,’ SPIE Vol. 3098, Holography and Shearography, pp. 528-535, (1997)
  7. Y. Y. Hung, ‘Shearography A Novel and Practical Approach for Nondestructive Inspection,’ Plenum Publishing Corporation, pp. 748-774, (1989)
  8. Eugene Hecht, ‘Optics,’ Addison-Wesley, pp. 748-774, (1987)
  9. ASME Boiler and Pressure Vessel Committee, ASME Boiler and Pressure Vessel Code, An America National Standard, Section XI : Rules for Inservice Inspection and Testing of Components of light-Water Cooled Plants, The American Society of Mechanical Engineers, (1989)
  10. R. Jones and C. Wykes, ‘Holographic and speckle interferometry,’ Cambridge University Press, pp. 122-164, (1989)
  11. S. Nakadate, T. Yatagai and H Saito, ‘Digital speckle-pattern shearing interferometry’, Reprinted with permission from Applied Optics, Vol. 19(24), pp. 4241-4246, (1980)
  12. A. A. Aiyer, ‘Shearography : a potential portable on-site nondestructive evaluation inspection tool’, SPIE Vol. 1212 Practical Holography N, pp. 349-356, (1990)