DOI QR코드

DOI QR Code

Treatment of Waste Solution of Waste Refrigerant Decomposition Process Using Atmospheric Pressure Plasma

대기압 플라즈마를 이용한 폐냉매 분해 공정 폐수 처리

  • Ko, Eun Ha (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Yoo, Hyeonseok (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Jung, Yong-An (Chemical Analysis Center, Korea Testing Certification) ;
  • Park, Dong-Wha (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kim, Dong-Wook (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 고은하 (인하대학교 화학.화학공학융합학과) ;
  • 유현석 (인하대학교 화학.화학공학융합학과) ;
  • 정용안 (한국기계전기전자시험연구원 화학분석센터) ;
  • 박동화 (인하대학교 화학.화학공학융합학과) ;
  • 김동욱 (인하대학교 화학.화학공학융합학과) ;
  • 최진섭 (인하대학교 화학.화학공학융합학과)
  • Received : 2018.03.12
  • Accepted : 2018.05.09
  • Published : 2018.08.10

Abstract

Our group reported the thermal decomposition of R-22 ($CHClF_2$) refrigerants by nitrogen thermal plasma in previous studies. However, it was proposed that the wastewater generated from the end part of the process contains high concentration of fluoride ion which is a component of R-22. The additional post-treatment process to neutralize the $F^-$ ions in the wastewater was investigated in this study. The wastewater generated through the decomposition of R-22 with the same procedure in the previous work was treated using the neutralizer, $Ca(OH)_2$, and the atmospheric pressure plasma jet (APPJ) independently as a post-treatment process. Wastewater samples were collected directly after the treatment for ion-chromatography analysis to trace the change of the concentration of $F^-$ ion in the wastewater. The fluoride concentration in the wastewater showed the highest value when the single water was used as a neutralizer, and the concentration of fluoride in the wastewater was dramatically reduced when the post-treatments were performed.

본 연구진은 선행 연구를 통하여 R-22 ($CHClF_2$) 폐냉매를 질소 열플라즈마 시스템을 이용하여 열분해공정에 관하여 보고한 바 있다. 하지만 해당 공정에서 열분해를 거쳐 발생된 폐수 중 불소이온이 고농도로 존재한다는 문제점이 제기되었다. 본 연구는 폐수 중 불소 이온을 중화하기 위한 추가 후단처리 공정에 관한 연구이다. 선행 연구와 동일한 공정을 통해 R-22의 열분해를 수행하여 발생한 폐수를 대기압 플라즈마를 이용하여 처리하였으며, 이를 물과 중화제인 $Ca(OH)_2$ 용액으로 후단 처리한 것과 비교하여 폐수 중 $F^-$ 이온의 농도 변화를 확인하였다. 물만 사용하여 중화한 경우 폐수 중 불소이온 농도가 가장 높았으며 중화액을 살포하거나 대기압 플라즈마로 추가로 후처리를 수행한 경우 폐수 중 불소이온 농도가 현저하게 감소하는 것이 확인되었다.

Keywords

References

  1. C. H Son, Condensation heat transfer characteristics of R-410A as an alternative R-22 in the condenser with small diameter tubes, Clean Technol., 13, 151-158 (2007).
  2. J. M. Calm, The next generation of refrigerants-Historical review, considerations, and outlook, Int. J. Refrig., 31, 1123-1133 (2008). https://doi.org/10.1016/j.ijrefrig.2008.01.013
  3. E. H. Ko, H. Yoo, Y. A. Jung, D. W. Park, D. W. Kim, and J. Choi, Chlorodifluoromethane ($CHClF_2$) thermal decomposition by DC nitrogen plasma, Appl. Chem. Eng., 28, 171-176 (2017).
  4. A. Tor, N. Danaoglu, G. Arslan, and Y. Cengeloglu, Removal of fluoride from water by using granular red mud: Batch and column studies, J. Hazard. Mater., 164, 271-278 (2009). https://doi.org/10.1016/j.jhazmat.2008.08.011
  5. M. J. Haron, W. M. Z. Wan Yunus, S. A. Wasay, A. Uchiumi, and S. Tokunaga, Sorption of fluoride ions from aqueous solutions by a yttrium‐loaded poly(hydroxamic acid) resin, Int. J. Environ. Study, 48, 245-255 (1994).
  6. L. Fang, K. N. Ghimire, M. Kuriyama, K. Inoue, and K. Makino, Removal of fluoride using some lanthanum (III)-loaded adsorbents with different functional groups and polymer matrices, J. Chem. Technol. Biotechnol., 78, 1038-1047 (2003). https://doi.org/10.1002/jctb.902
  7. G. Ni, G. Zhao, Y. Jiang, J. Li, Y. Meng, and X. Wang, Steam plasma jet treatment of phenol in aqueous solution at atmospheric pressure, Plasma Process. Polym., 10, 353-363 (2013). https://doi.org/10.1002/ppap.201200155
  8. B. Mohammadi and A. A. Ashkarran, Cold atmospheric plasma discharge induced fast decontamination of a wide range of organic compounds suitable for enviromental applicadtions, J. Water Process Eng., 9, 195-200 (2016). https://doi.org/10.1016/j.jwpe.2016.01.002
  9. Y. S. Mok and J. O. Jo, Degradation of a textile azo dye by pulsed arc discharge to the surface wastewater, Korean J. Chem. Eng., 24, 607-611 (2007). https://doi.org/10.1007/s11814-007-0011-0
  10. Y. Tang, X. Guan, T. Su, N. Gao, and J. Wang, Fluoride adsorption onto activated alumina: modeling the effects of pH and some competing ions, Colloids Surf. A., 337, 33-38 (2009). https://doi.org/10.1016/j.colsurfa.2008.11.027
  11. A. Rafique, M. A. Awan, A. Wasti, I. A. Qazi, and M. Arshad, Removal of fluoride from drinking water using modified immobilized activated alumina, J. Chem., 2013, 1-7 (2012).
  12. J. Wang, C. Petit, X. X. Zhang, and S. Cui, Phase equilibrium study of the $AlCl_3-CaCl_2-H_2O$ system for the production of aluminum chloride hexahydrate from Ca-rich flu ash, J. Chem. Eng. Data, 61, 359-369 (2016). https://doi.org/10.1021/acs.jced.5b00603