DOI QR코드

DOI QR Code

Ytterbium Test for Water Vapor Transmission Rate Measurement of Passivation Film for Organic Electronics

유기 전자 소자의 봉지막 투습도 분석을 위한 Ytterbium Test

  • Lim, Young-Ji (Department of Creative Convergence Engineering, Hanbat National University) ;
  • Lee, Jae-Hyun (Department of Creative Convergence Engineering, Hanbat National University)
  • 임영지 (국립한밭대학교 창의융합학과) ;
  • 이재현 (국립한밭대학교 창의융합학과)
  • Received : 2018.03.20
  • Accepted : 2018.04.10
  • Published : 2018.08.10

Abstract

In this paper, the optical and electrical properties of ytterbium films were studied for water vapor transmission rate (WVTR) analysis of encapsulation films used in organic electronic devices. Ytterbium thin films show a wide range of light transmittance (70-10%) and resistivity ($6.0-0.16m{\Omega}{\cdot}cm$) depending on various film thicknesses (20-100 nm). The Yb thin films were oxidized with moisture and its transmittance and resistance changed in real time. As a result, the WVTR of parylene and aluminum nitride (AlN) laminated thin encapsulation film was measured to be $4.3{\times}10^{-3}g/m^2{\cdot}day$ with the 25 nm thick ytterbium thin film.

본 논문에서는 유기전자소자에서 사용되는 수분 차단막의 투습도 분석을 위하여 ytterbium의 광학적 전기적 특성을 연구하였다. Ytterbium 박막은 다양한 성막 두께(20-100 nm)에 따라 넓은 범위의 광투과도(70-10%)와 비저항($6.0-0.16m{\Omega}{\cdot}cm$) 값을 나타내었다. 25 nm의 ytterbium 박막은 수분과 반응하여 산화되며 투과도와 저항이 실시간으로 변화하였고 이를 통해 parylene 고분자와 aluminum nitride 적층형 박막 봉지 필름을 분석한 결과 $4.3{\times}10^{-3}g/m^2{\cdot}day$의 투습도를 측정할 수 있었다.

Keywords

References

  1. J.-H. Lee and J.-J. Kim, Interfacial doping for efficient charge injection in organic semiconductors, Physica Status Solidi A, 209, 1399-1413 (2012). https://doi.org/10.1002/pssa.201228199
  2. H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, Degradation mechanism of small molecule-based organic light-emitting devices, Science, 283, 1900-1902 (1999). https://doi.org/10.1126/science.283.5409.1900
  3. R. Meerheim, S. Scholz, S. Olthof, G. Schwartz, S. Reineke, K. Walzer, and K. Leo, Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices, J. Appl. Phys., 104, 014510 (2008). https://doi.org/10.1063/1.2951960
  4. J.-S. Park, H. Chae, H. K. Chung, and S. I. Lee, Thin film encapsulation for flexible AM-OLED: A review, Semicond. Sci. Technol., 26, 034001 (2011). https://doi.org/10.1088/0268-1242/26/3/034001
  5. N. Inagaki, V. Cech, K. Narushima, and Y. Takechi, Oxygen and water vapor gas barrier poly(ethylene naphthalate) films by deposition of SiOx plasma polymers from mixture of tetramethoxysilane and oxygen, J. Appl. Polym. Sci., 104, 915-925 (2007). https://doi.org/10.1002/app.25802
  6. M. Hermenau, S. Schubert, H. Klumbies, J. Fahlteich, L. Müller-Meskamp, K. Leo, and M. Riede, The effect of barrier performance on the lifetime of small-molecule organic solar cells, Sol. Energy Mater. Sol. Cells, 97, 102-108 (2012). https://doi.org/10.1016/j.solmat.2011.09.026
  7. P. E. Burrows, Ultra barrier flexibe substrates for flat panel displays, Displays, 22, 65-69 (2001). https://doi.org/10.1016/S0141-9382(00)00064-0
  8. Mocon, Inc., Aquatran Model 3, http://www.mocon.com/.
  9. R. Dunkel, R. Bujas, A. Klein, and V. Horndt, Method of measuring ultralow water vapor permeation for OLED displays, Proc. IEEE, 93, 1478-1482 (2005). https://doi.org/10.1109/JPROC.2005.851494
  10. M. D. Kempe, M. O. Reese, and A. A. Dameron, Evaluation of the sensitivity limits of water vapor transmission rate measurements using electrical calcium test, Rev. Sci. Instrum., 84, 025109 (2013). https://doi.org/10.1063/1.4789803
  11. S. Schubert, H. Klumbies, L. Müller-Meskamp, and K. Leo, Ctrical calcium test for moisture barrier evaluation for organic devices, Rev. Sci. Instrum., 82, 094101 (2011). https://doi.org/10.1063/1.3633956
  12. T. W. Kim, M. Yan, A. G. Erlat, P. A. McConnelee, M. Pellow, J. Deluca, T. P. Feist, A. R. Duggal, and M. Schaepkens, Transparent hybrid inorganic/organic barrier coatings for plastic organic light-emitting diode substrates, J. Vac. Sci. Technol. A, 23 971-977 (2005). https://doi.org/10.1116/1.1913680
  13. R. S. Kumar, M. Auch, E. Ou, G. Ewald, and C. S. Jin, Low moisture permeation measurement through polymer substrates for organic light emitting devices, Thin Solid Films, 417, 120-126 (2002). https://doi.org/10.1016/S0040-6090(02)00584-9
  14. J.-H. Lee and A. Kim, Structural and thermal characteristics of the fast-deposited parylene substrate for ultra-thin organic light emitting diodes, Org. Electron., 47, 147-151 (2017). https://doi.org/10.1016/j.orgel.2017.05.005
  15. J. A. Bertrand and S. M. George, Evaluating $Al_2O_3$ gas diffusion barriers grown directly on Ca films using atomic layer deposition techniques, J. Vac. Sci. Technol., 31, 01A122 (2013). https://doi.org/10.1116/1.4763360
  16. J.-W. Lim, K. Mimura, and M. Isshiki, Thickness dependence of resistivity for Cu films deposited by ion beam deposition, Appl. Surf. Sci., 217, 95-99 (2003). https://doi.org/10.1016/S0169-4332(03)00522-1
  17. M. A. Angadi and P. V. Ashrit, The effect of deposition parameters on the electrical properties of thin ytterbium films, Physica Status Solidi A, 77, 685-692 (1983). https://doi.org/10.1002/pssa.2210770234
  18. A. Hogg, T. Aellen, S. Uhl, B. Graf, H. Keppner, Y. Tardy, and J. Burger, Ultra-thin layer packaging for implantable electronic devices, J. Micromech. Microeng., 23, 075001 (2013). https://doi.org/10.1088/0960-1317/23/7/075001
  19. G.-R. Yang, S. Ganguli, J. Karcz, W. N. Gill, and T.-M. Lu, High deposition rate parylene films, J. Cryst. Growth, 183, 385-390 (1998). https://doi.org/10.1016/S0022-0248(97)00428-4