• Title/Summary/Keyword: chaotic circuit

Search Result 63, Processing Time 0.024 seconds

Improved Single Feistel Circuit Supporter by A Chaotic Genetic Operator

  • JarJar, Abdellatif
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.165-174
    • /
    • 2020
  • This document outlines a new color image encryption technology development. After splitting the original image into 240-bit blocks and modifying the first block by an initialization vector, an improved Feistel circuit is applied, sponsored by a genetic crossover operator and then strong chaining between the encrypted block and the next clear block is attached to set up the confusion-diffusion and heighten the avalanche effect, which protects the system from any known attack. Simulations carried out on a large database of color images of different sizes and formats prove the robustness of such a system.

The design of digital circuit for chaotic composition map (혼돈합성맵의 디지털회로설계)

  • Park, Kwang-Hyeon;Seo, Yong-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.652-657
    • /
    • 2013
  • In this paper the design methode of a separated composition state machine based on the compositive map with two chaotic maps together and the result of that is proposed. The digital circuits of chaotic composition map for the use of chaotic binary stream generator are designed in this work. The discretized truth table of chaotic composition function which is composed of two chaotic functions - the saw tooth function and skewed logistic function - is made out, and also simplefied Boolean algebras of digital circuits are obtained as a mathematical model. Consequently, the digital circuits of the map for chaotic composition function are presented in this paper.

Design of Random Binary Sequence Generator using the Chaotic Map (혼돈맵을 사용한 난수성 2진 순서발생기의 설계)

  • Park, Kwang-Hyeon;Baek, Seung-Jae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.7
    • /
    • pp.53-57
    • /
    • 2008
  • The discretized saw-tooth map with the 16-bit finite precision which is one of the 1-dimensional chaotic maps is designed, and the circuit of chaotic binary sequence generator using the discretized saw-tooth map is presented also in this brief. The real implementation of designed chaotic map is accomplished by connecting the input and output lines exactly according to the simplified Boolean functions of output variables obtained from truth table which is discretized. The random binary output sequences generated by mLFSR generator were used for the inputs of descretized saw-tooth map, and, by the descretized map, chaotic binary sequence which has more long period of 16 times minimally is generated as a results.

Analysis of Chaotic True Random Number Generator Using 0.18um CMOS Process (0.18um CMOS 공정을 사용한 카오스 난수 발생기 분석)

  • Jung, Ye-Chan;Jayawickra, Chamindra;Al-Shidaifat, AlaaDdin;Lee, Song-Wook;Kahrama, Nihan;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.635-639
    • /
    • 2021
  • As times goes by, a ton of electric devices have been developing. Nowadays, there are many personal electric goods that are connected each other and have important private information such as identification, account number, passwords, and so on. As many people own at least one electric device, security of the electric devices became significant. To prevent leakage of the information, study of Chaotic TRNG, "Chaotic True Random Number Generator", protecting the information by generating random numbers that are not able to be expected, is essential. In this paper, A chaotic TRNG is introduced is simulated. The proposed Chaotic TRNG is simulated with Virtuoso &, a circuit design program of Cadence that is a software company. For simulating the mentioned Chaotic TRNG, setting values, 0V low and 3V high on Vpulse, 1.2V on V-ref, 3.3V on VDD, and 0V on VSS, are used.

Chaos system control via discrete signals (이산 신호에 의한 카오스 시스템 제어)

  • 양기철;권세현;안기형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.147-150
    • /
    • 1997
  • In the study, we consider chua's circuit which is a paradigmatic chaotic system belonging to Lur'e form. It is shown that the dynamic behavior of such a system can be influenced in such a way as to obtain out of chaotic behavior a desired periodic orbit corresponding to an unstable periodic trajectory which exists in the system. This kind of control can be achieved via injection of a single continuous time signal representing the output of the system associated with an unstable periodic orbit embedded in the chaotic attractor We investigate the case when this signal is sampled, i.e. we supply to the system the control signal at discrete time moments only.

  • PDF

The Analysis of Chaotic Behavior in the Chaotic Robot with Hyperchaos Path of Van der Pol(VDP) Obstacle

  • Youngchul Bae;Kim, Juwan;Park, Namsup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.589-593
    • /
    • 2003
  • In this paper, we propose that the chaotic behavior analysis in the mobile robot of embedding Chua's equation with obstacle. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle. In the obstacle, we only assume that all obstacles in the chaos trajectory surface in which robot workspace has an unstable limit cycle with Van der Pol equation.

  • PDF

Generating Complex Klinokinetic Movements of 2-D Migration Circuits Using Chaotic Model of Fish Behavior

  • Kim, Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.159-169
    • /
    • 2007
  • The complex 2-dimensional movements of fish during an annual migration circuit were generated and simulated by a chaotic model of fish movement, which was expanded from a small-scale movement model. Fish migration was modeled as a neural network including stimuli, central decision-making, and output responses as variables. The input stimuli included physical stimuli (temperature, salinity, turbidity, flow), biotic factors (prey, predators, life cycle) and landmarks or navigational aids (sun, moon, weather), values of which were all normalized as ratios. By varying the amplitude and period coefficients of the klinokinesis index using chaotic equations, model results (i.e., spatial orientation patterns of migration through time) were represented as fish feeding, spawning, overwintering, and sheltering. Simulations using this model generated 2-dimesional annual movements of sea bream migration in the southern and western seas of the Korean Peninsula. This model of object-oriented and large-scale fish migration produced complicated and sensitive migratory movements by varying both the klinokinesis coefficients (e.g., the amplitude and period of the physiological month) and the angular variables within chaotic equations.

Hybrid State Space Self-Tuning Fuzzy Controller with Dual-Rate Sampling

  • Kwon, Oh-Kook;Joo, Young-Hoon;Park, Jin-Bae;L. S. Shieh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.244-249
    • /
    • 1998
  • In this paper, the hybrid state space self-tuning control technique Is studied within the framework of fuzzy systems and dual-rate sampling control theory. We show that fuzzy modeling techniques can be used to formulate chaotic dynamical systems. Then, we develop the hybrid state space self-tuning fuzzy control techniques with dual-rate sampling for digital control of chaotic systems. An equivalent fast-rate discrete-time state-space model of the continuous-time system is constructed by using fuzzy inference systems. To obtain the continuous-time optimal state feedback gains, the constructed discrete-time fuzzy system is converted into a continuous-time system. The developed optimal continuous-time control law is then convened into an equivalent slow-rate digital control law using the proposed digital redesign method. The proposed technique enables us to systematically and effective]y carry out framework for modeling and control of chaotic systems. The proposed method has been successfully applied for controlling the chaotic trajectories of Chua's circuit.

  • PDF

Integrated Circuit Implementation and Characteristic Analysis of a CMOS Chaotic Neuron for Chaotic Neural Networks (카오스 신경망을 위한 CMOS 혼돈 뉴런의 집적회로 구현 및 특성 해석)

  • Song, Han-Jeong;Gwak, Gye-Dal
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.5
    • /
    • pp.45-53
    • /
    • 2000
  • This paper presents an analysis of the dynamical behavor in the chaotic neuron fabricated using 0.8${\mu}{\textrm}{m}$ single poly CMOS technology. An approximated empirical equation models for the sigmoid output function and chaos generative block of the chaotic neuron are extracted from the measurement data. Then the dynamical responses of the chaotic neuron such as biurcation diagram, frequency responses, Lyapunov exponent, and average firing rate are calculated with numerical analysis. In addition, we construct the chaotic neural networks which are composed of two chaotic neurons with four synapses and obtain bifurcation diagram according to synaptic weight variation. And results of experiments in the single chaotic neuron and chaotic neural networks by two neurons with the $\pm$2.5V power supply and sampling clock frequency of 10KHz are shown and compared with the simulated results.

  • PDF

A four-dimensional chaotic spiking oscillator

  • Takahashi, Yusuke;Nakano, Hidehiro;Saito, Toshimichi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1992-1995
    • /
    • 2002
  • This paper presents a novel 4-D chaotic spiking oscillator. The oscillator can generate hyperchaos characterized by two positive Lyapunov exponents. Us-ing a simple test circuit, typical phenomena can be verified in the laboratory.

  • PDF