A four-dimensional chaotic spiking oscillator
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Abstract: This paper presents a novel 4-D chaotic spik-
ing oscillator. The oscillator can generate hyperchaos
characterized by two positive Lyapunov exponents. Us-
ing a simple test circuit, typical phenomena can be ver-
ified in the laboratory.

1. Introduction

The spiking oscillator is known as simple and inter-
esting circuit, and have been studied intensively. Fig.1
shows the spiking oscillator consists of N-D linear os-
cillator and spiking switch. The switch is characterized
by "If the capacitor voltage v reaches a threshold, the
switch S is closed and v is reset to the base voltage
E, instantaneously.” The switching jump corresponds
to the (N + 1)th state. Therefore, the circuit is (N + 1)
dimensional. In the existing works, a 2-D spiking os-
cillator relates to a simple neuron model that exhibits
periodic phenomena only [1]. In our previous works, we
have studied 3-D chaotic spiking oscillators (ab. CSOs)
which can exhibit chaos and bifurcation phenomena, [2].

In this paper, we present a novel 4-D chaotic spiking
oscillator. The four or more dimensional system exhibits
interesting complicated phenomena such as hyperchaos
[3][4]. We can expect that the 4-D CSO can exhibit rich
phenomena that the 3-D CSOs can not exhibit. Since
the 4-D CSO is piecewise linear, the dynamics is de-
scribed by the 2-D return map which is given theoreti-
cally. Using this map, Lyapunov exponent can be calcu-
lated precisely. Analysis of these phenomena is impor-
tant as basic nonlinear problems such as classification of
chaos and bifurcation phenomena. It also relates to en-
gineering applications such as the pulse-coupled neural
networks for information processing [5][6].

Next we present a simple implementation circuit
of the 4-D CSO. The circuit consists of three capac-
itors, three Operational Transconductance Amplifiers
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Figure 1. A circuit family of the spiking oscillator.
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(ab. OTAs), one comparator, one pulse generator (ab.
P.G.) and one spiking switch. Using a simple test circuit,
typical phenomena can be verified in the laboratory.

2. 4-D chaotic spiking oscillator

Fig.2 shows the implementation example of the 4-
D CSO. In the figure the OTAs are voltage-controlled
current sources converting the input differential voltage
into the output current, e.g., i; = g1v3. Three OTAs
construct a three-port voltage controlled current source
(ab. 3PVCCS). Typical phenomena can be verified in
the laboratory. Connecting three capacitors to the three
ports, we obtain a linear circuit described by Equation
(1) if the switched S is opened

Civny 0 0 ¢ 1
pr Covy | = 0 g -9 va [, (1)
Csvs —g3 g3 0 U3

for v(t) < Vp.

If the capacitor voltage v; reaches a threshold voltage
Vr, the switch S is closed and v; is reset to a base voltage
E(< Vr) instantaneously, holding (v2,vs)=constant.
The switching rule is described by Equation (2).

vy (t+) E
v(t?) | = | w(t) |, (2)
v3(t*) vs(t)

if vi(t) = V.

Here, we assume that the matrix of Equation (1) has
a real eigenvalue Aw and complex conjugate eigenvalues
dw + jw. 8,w, A are given by Equation (3).
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Figure 2. Implementation example of the 4-D CSO.
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where we assume § > 0, A > 0 and w > 0. Using the
following dimensionless variables and parameters:
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Equations (1) and (2) are transformed into Equations
(5) and (6).
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for ui(7) + us(1) <
[ui(r®) T T w(@)-(1-p)(1-g) ]
[ ug(rt) ‘= | uz(T) — p2(l - ¢) ., (6)
v3(F) u3(t) — p3(1 - q)

if wi(r) +ug(r)=1.

The 4-D CSO have five parameters: 4, A, p, p3,q. For
simplicity, we choose the base level g as the control pa-
rameter and fix the other parameters as the followings:
6 =0.02, A =0.04, po = —-0.03, p3 = 0.5.
The trajectory moves as illustrated in Fig.3. The tra-
jectory rotates divergently around the uy axis. If the
trajectory reaches a threshold plane uy + us = 1, it
jumps onto the base plane u; + uz = ¢ along the direc-
tion vector (1 — ps, p2,p3)” instantaneously. Equation
(5) has the following exact piecewise solution.

[ ui(r) ] [ cost sint 0 ]
uz(t) , =7 | —sinT cost 0
| u3(7) | | 0 0 eA-97 |
[ w(©) ] ™
x| u2(0) [ for uy (7) + ug(r) < L.

Uus (0)

where, (u1(0), u2(0),u3(0))T denotes an initial state vec-
tor at 7 =0.
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Figure 3. Phase space.

3. 2-D return map

In order to derive a 2-D return map, we define a plane
P= {(Ul, U2, u3)lu1 =q- u3}. (8)

Let a point on P be represented by its ug-us-coordinate.
As an orbit starts from a point (ugg, ugg) on P at 7 =0,
it must reach the threshold at some positive time 7 = 79.
At this moment the orbit jumps and returns to a point
(ug1, u31) on P (see Fig.3). Then we can define the
following 2-D return map.

F:P— P, (ug, uso) — (u21, us1), 9)

F(u20, us0)
(f(uzo, u30), g{uze, us0)).

(uz1, uz1) =
(10)

The functions f and g are calculated using Equatxons
(6) and (7).

ug; = fuzo, u30)
= e¥(—(g —ug0)sinTp + uggcos 7o) (11)

—p2(1—q),

uz1 = g(u20, u30)

(12)

= uge*™ —p3(l —q),

where the reset time 7 is the positive minimum root of
the following implicit function.

h(uag, usg, 7o) =0
= e%70((g — u30) cos o + uz0sin 7o)
+U30€Af° - 1.

(13)

Fig.4 shows typical attractors and corresponding to 2-
D return maps. Using this map, Lyapunov exponents
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Figure 4. Typical attractors ((I):u1 ~ u3 plane, (II):u; —
ug plane, (III):us — uz plane, (IV):2-D return map,
6=0.02, A=0.04, pp = ~0.03, p3 = 0.5).

can also be calculated analytically. Fig.5 shows the typi-
cal bifurcation diagrams and corresponding to Lyapunov
exponents. Ay; and Ajp denote first and second 1-D
Lyapunov exponent, respectively. Since A\;; and A2 are
positive, the 4-D CSO generates hyperchaos.

4. Laboratory experiments

In this section, we implement the 4-D CSO. The
3PVCCS is constructed by three OTAs. The OTA is
realized by the circuit shown in Fig.6(a) with charac-
teristic Fig.6(b). Here, we use a linear region only :
io = g(vi1 — vi2). The conductance of the OTA is con-
trolled a resistance 1/g. The dynamic range of the linear

which is adjusted by the bias current Icrr. Threshold
voltage is judged using comparator (LM339), switch-
ing pulse is generated using mono-stable multi vibrator
(4538), and a spiking switch is implemented using ana-
log switch (4066). Fig.7 shows laboratory measurements
corresponding to typical attractors shown in Fig.4. The
return map attractors can also be observed by inputting
the output pulse-train from P.G. in Fig.2 into brightness
control terminal (Z-axis) of the oscilloscope.

5. Conclusion

We have presented a novel 4-D chaotic spiking oscil-
lator and a simple implementation circuit. The system
can generate hyperchaos characterized by two positive
Lyapunov exponents. Using a simple test circuit, we
have verified typical phenomena in the laboratory.

Future problems include the analysis bifurcation phe-
nomena for wider parameter region.
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Figure 6. Implementation of the OTA.
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Figure 7. Laboratory experiments ((I):v; — vz plane,

(II):v; — v plane, (II):v3 — vy plane, (IV):2-D re-
turn map, C; = C; = C5 = 2[nF]|, Vpr = 1[V],
1/9: = 1/g> = 100[kQY], 1/g5 = 1.23[k02)).
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