• Title/Summary/Keyword: carbon capture and storage(CCS)

Search Result 114, Processing Time 0.03 seconds

Technical Review on Risk Assessment Methodology for Carbon Marine Geological Storage Systems (이산화탄소 해양 지중저장 시스템에서의 누출 위해성 평가방법에 관한 기술적 검토)

  • Hwang, Jin-Hwan;Kang, Seong-Gil;Park, Young-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2010
  • Carbon Capture and Storage (CCS) technology mitigates the emission amount of carbon dioxide into the atmosphere and can reduce green house effect which causes the climate change. Deep saline aquifer or obsolete oil/gas storage etc. in the marine geological structure are considered as the candidates for the storage. The injection and storage relating technology have been interested in the global society, however the adverse effect caused by leakage from the system failure. Even the safety level of the CCS is very high and there is almost no possibility to leak but, still the risk to marine ecosystem of the high concentrated carbon dioxide exposure is not verified. The present study introduces the system and environmental risk assessment methods. The feature, event and process approach can be a good starting point and we found the some possibility from the fault tree analysis for evaluation. From the FEP analysis, we drove the possible scenario which we need to concentrate on the construction and operation stages.

Numerical Analysis on Depressurization of High Pressure Carbon Dioxide Pipeline (고압 이산화탄소 파이프라인의 감압거동 특성에 관한 수치해석적 연구)

  • Huh, Cheol;Cho, Meang Ik;Kang, Seong Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • To inject huge amount of $CO_2$ for CCS application, high pressure pipeline transport is accompanied. Rapid depressurization of $CO_2$ pipeline is required in case of transient processes such as accident and maintenance. In this study, numerical analysis on the depressurization of high pressure $CO_2$ pipeline was carried out. The prediction capability of the numerical model was evaluated by comparing the benchmark experiments. The numerical models well predicted the liquid-vapor two-phase depressurization. On the other hands, there were some limitations in predicting the temperature behavior during the supercritical, liquid phase and gaseous phase expansions.

Scenario Analysis of Injection Temperature and Injection Rate for Assessing the Geomechanical Stability of CCS (Carbon Capture and Sequestration) System (이산화탄소 격리저장시스템의 역학적 안정성 평가를 위한 주입온도 및 주입량 시나리오 해석)

  • Kim, A-Ram;Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.12-23
    • /
    • 2016
  • For a successful accomplishment of Carbon Capture Sequestration (CCS) projects, appropriate injection conditions should be designed and optimized for site specific geological conditions. In this study, we evaluated the effect of injection conditions such as injection temperature and injection rate on the geomechanical stability of CCS system in terms of TOUGH-FLAC simulator, which is one of the well-known T-H-M coupled analysis methods. The stability of the storage system was assessed by a shear slip potential of the pre-existing fractures both in a reservoir and caprock, expressed by mobilized friction angle and Mohr stress circle. We demonstrated that no tensile fracturing was induced even in the cold CO2 injection, where the injected CO2 temperature is much lower than that of the reservoir and tensile thermal stress is generated, but shear slip of the fractures in the reservoir may occur. We also conducted a scenario analysis by varying injected CO2 volume per unit time, and found out that it was when the injection rate was decreasing in a step-wise that showed the least potential of a shear slip.

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

Technical and Economic Assessment of CO2 Transportation Options for Large-scale Integrated Carbon Capture & Sequestration(CCS) Project in South Korea

  • Lee, Ji Hyun;Kim, Beom-Ju;Kwak, No Sang;Shim, Jae-Goo;Shin, Su Hyun;Hwang, Sun-Na;Lee, Jung-Hyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • In order to examine the feasibility of Carbon Capture & Sequestration, a major technological strategy for the national goal of greenhouse gas reduction, this paper studies the various methods and corresponding costs for the transportation of $CO_2$ captured at the domestic thermal power plants, as well as performing comparative analysis with overseas CCS demonstration projects. It is predicted that the investment cost would be about 98 million USD when the using land-based pipelines to transport captured $CO_2$ from the thermal power plant located in the south coast. And using marine-based offshore pipelines, it will cost about twice the amount. When the captured $CO_2$ is transported from the power plant in the west coast instead, the cost is expected to increase substantially due to the transportation distance to the storage site being more than double to that of the south coast power plant case.

Applicability of DGCI (Dark Green Color Index) to Assess Potential Impacts of CO2 Leakage from the Geological Storage Site (이산화탄소 지중저장 시설의 잠재적 누출 판단을 위한 DGCI(Dark Green Color Index) 적용 가능성 평가)

  • Yoo, Sin Yee;Song, Yoon Jin;Oh, Hee Joo;Kim, You Jin;Yoo, Ga Young
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.351-356
    • /
    • 2016
  • The carbon capture and storage (CCS), which collects and stores carbon dioxide in a geological site, is a promising option to mitigate climate change. However, there is the possibility of carbon dioxide leakage from the soil in the steps of collecting, transporting, and storing. To ensure the feasibility of this technology, it is important to monitor the leakage of carbon dioxide and to assess the potential impacts. As plants are sensitive to the changes in carbon dioxide in the soil environment, we can utilize plant parameter to detect the carbon dioxide leakage. Currently, chlorophyll a content is a conventional index indicating the changes in plants, however, this method is labor intensive and it only utilizes a small portion of leaves. To overcome its limitations, a simple spectroscopic parameter, DGCI (dark green color index), was suggested as an easy and quick indicator. In this study, we compared the values of chlorophyll a contents with DGCI from the experiment investigating the impacts of high underground $CO_2$ on grape plants. Results suggest that DGCI had high correlation with chlorophyll a contents and it has high potential to be utilized as an easy indicator to monitor plants' responses to $CO_2$ treatment.

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

CCS Cost Estimation Model Process and Analysis

  • Lee, Soowook;Lee, Byungheon;Ko, Hyeong-il
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.63-68
    • /
    • 2016
  • This thesis proposed an objective and accurate fundamental numeric data for the economics and business analysis of applicable CCS technology to plant using existing fossil fuel by analyzing the influence of process improvement for commercialization of Carbon Capture and Storage(CCS) technology, which enables storing $CO_2$ generated by fossil fuel by extracting before emitting to air and press until it becomes liquid, and development and performance improvement of new solvent on Total Life Cycle Cost(TLC) of CCS.

Strategy for Development of HSE Management Framework for Offshore CCS Project in Korea (국내 해양 CCS 사업의 HSE 관리 프레임워크 구축 전략)

  • Noh, Hyonjeong;Kang, Kwangu;Kang, Seong-Gil;Lee, Jong-Gap
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2017
  • Korea is preparing an offshore carbon capture, transport and storage (CCS) demonstration project which is recognized as one of important $CO_2$ reduction technologies to mitigate climate change. The offshore CCS project aims to transport, inject and store large amount of $CO_2$ into offshore geologic formation, and has a potential risk of leakage which might cause disastrous damage to human health, environment and property. Therefore, in order to ensure the safety of the offshore CCS project, a strict HSE (health, safety and environment) management plan and its implementation are required throughout the project life cycle. However, there are no HSE domestic laws or regulations applicable to CCS projects, and the related research is insufficient in Korea. For the derivation of the essential and urgent requirement in HSE management framework applicable to the offshore CCS project in Korea, we analysed the HSE management methodologies and foreign CCS HSE management guidelines and cases. First, this paper has analyzed ISO 31000, a generalized risk management principles. Second, we have investigated the HSE management practices of CCS projects in Norway and UK. Based on the analyses, we suggested the necessity of developing the HSE Philosophy and the HSE management process through the whole life cycle. Application of HSE management in early phase of an offshore CCS project will promote systematic and successful project implementation in a cost-effective and safe way.

Case Study on Induced Seismicity during the Injection of Fluid Related to Energy Development Technologies (에너지개발기술에 있어 유체주입에 따른 유발지진 발생 사례분석)

  • Lee, Chung-In;Min, Ki-Bok;Kim, Kwang-Il
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.418-429
    • /
    • 2014
  • Induced seismicity related to four energy development technologies that involve fluid injection or withdrawal: geothermal energy, conventional oil and gas development including enhanced oil recovery (EOR), shale gas recovery, and carbon capture and storage (CCS) is reviewed by literature investigation. The largest induced seismic events reported in the technical literature are associated with projects that did not balance the large volume of fluids injected into, or extracted from the underground reservoir. A statistical observation shows that the net volume of fluid injected and/or extracted may serve as a proxy for changes in subsurface stress conditions and pore pressure, and other factors. Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and the amount of fluid being withdrawn, such as geothermal and most oil and gas development, may produce fewer induced seismic events than technologies that do not maintain fluid balance, such as long-term wastewater disposal wells and CCS projects.