Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea

국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감

  • Wee, Jung-Ho (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Kim, Jeong-In (Department of Industrial Economics, Chung Ang University) ;
  • Song, In-Sung (CDM4U) ;
  • Song, Bo-Yun (Department of Global Environment, Environmental Management Corporation) ;
  • Choi, Kyoung-Sik (Department of Global Environment, Environmental Management Corporation)
  • Published : 2008.09.30

Abstract

In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

2004년 기준, 온실가스(GHG; Greenhouse Gas) 총 배출량 약 5억9,060만톤(t)$CO_2$로 배출량 세계 10위권인 우리나라는 국제 환경의 변화를 볼 때 향후 반드시 GHG를 감축해야한다. 2004년 국내 에너지 부문 중, 전력 발전 및 산업 부분에서 배출된 이산화탄소(CO$_2$)량은 총 2억9,685만t으로 우리나라 GHG 전체 발생량의 53.3%를 차지하여 이 두 분야에서 CO$_2$ 배출을 감축시키는 것이 가장 시급하고 중요한 문제이다. 또한 이 두 분야는 산업의 특성상 CCS(Carbon Capture and Storage) 기술을 적용하여 효율적으로 CO$_2$를 저감할 수 있는 가장 잠재력이 높은 분야이다. 두 분야에서 효율적으로 적용될 수 있는 CCS 기술로 단기적으로는 amine을 이용한 화합흡수법이, 중, 장기적으로는 ATR(Autothermal reforming), 또는 MSR-H2(Methane steam reformer with hydrogen separation membrane reactor)가 장착된 연소 전 기술과, SOFC+GT(Solid oxide fuel cell-Gas turbine) 같은 순산소 연소 기술이 가장 유리 할 것으로 예상된다. 이와 같은 최신 연소 전 및 순산소 연소 기술을 이용하면 향후 CO$_2$ 포집 비용을 $US 8.5-43.5/tCO$_2$로 줄일 수 있으며 이를 이용하여 전력 발전 및 산업 부분에서 발생하는 CO$_2$의 10%만을 감축하더라도 약 3,000만t의 CO$_2$를 저감할 수 있겠다.

Keywords

References

  1. Richard, B., 'APEC Business and Climate Change,' in Proceedings of the 2nd Asia Region Climate and Energy Workshop, Seoul, pp. 5(2005)
  2. Klemes, J., Bulatov, I., and Cockerill, Y., 'Technoeconomic modelling and cost functions of $CO_2$ capture processes,' Comput. Chem. Eng., 31(5-6), 445-455(2004) https://doi.org/10.1016/j.compchemeng.2006.06.002
  3. Kosugi, T., Hayashi, A., Matsumoto, T., Akimoto, K., Tokimatsu, K., Yoshida, H., Tomoda, T., and Kaya, Y., 'Time to realization: Evaluation of $CO_2$ capture technology R&Ds by GERT(Graphical Evaluation and Review Technique) analyses,' Energy, 29(9-10), 1297-1308(2004) https://doi.org/10.1016/j.energy.2004.03.088
  4. Rao, A. B., and Rubin, E., 'A technical, economic and environmental assessment of amine-based $CO_2$ capture technology for power plant greenhouse gas control,' Environ. Sci. Technol., 36, 4467-4475(2002)
  5. 류청걸, '연소 후 배가스의 $CO_2$ 회수 기술의 최근 동향,' 이산화탄소 포집 및 저장기술/정책워크 초록집, 고려대학교, pp. 57(2006)
  6. 심재운, 문승현, '활성탄소 섬유상에서 전기변동법을 이용한 $CO_2$의 흡/탈착,' Korean Chem. Eng. Res., 43(3), 432-437(2005)
  7. Powell, C. E. and Qiao, G.G., 'Polymeric $CO_2/N_2$ gas separation membranes for the capture of carbon dioxide from power plant flue gases,' J. Membr. Sci., 279(1-2), 1-49(2006) https://doi.org/10.1016/j.memsci.2005.12.062
  8. Ho, M. T., Allinson, G., and Wiley, D. E., 'Comparison of $CO_2$ separation options for geo-sequestration: are membranes competitive?,' Desalination, 192(1-3), 288-295(2006) https://doi.org/10.1016/j.desal.2005.04.135
  9. Davison, J., 'Performance and costs of power plants with capture and storage of $CO_2$,' Energy, 32(7), 1163-1176(2007) https://doi.org/10.1016/j.energy.2006.07.039
  10. Abraham, B.M., Asbury, J.G., Lynch, E.P., and Teotia, A.P.S., 'Coal-oxygen process provides carbon dioxide for enhanced recovery,' Oil Gas J., 80(11), 68-70(1982)
  11. 이창하, '저가 고순도 $O_2$ 제조용 PVSA 공정 기술 개발,' NICE, 24(1), 54-60(2006)
  12. Buhre, B.J.P., Elliott, L.K., Sheng, C.D., Gupta, R.P., and Wall, T.F., 'Oxy-fuel combustion technology for coal-fired power generation,' Prog. Energy Combust., 31(4), 283-307(2005) https://doi.org/10.1016/j.pecs.2005.07.001
  13. Mimura, T., Shimojo, S., Suda, T., Iijima, M., and Mitsuoka, S., 'Research and development on energy saving technology for flue gas carbon dioxide recovery and steam system in power plant,' Energ. Convers. Manage., 36(6-9), 397-400(1995) https://doi.org/10.1016/0196-8904(95)00029-D
  14. Bolland, O., Undrum, H., 'Removal of $CO_2$ from gas turbine power plants: evaluation of pre-and post-combustion methods. In: Greenhouse gas control technologies,' in Proceedings of the 4th international conference on greenhouse gas control technologies, Interlaken, pp. 125-130(1998)
  15. Ohta, H., '$CO_2$ separation and removal technologies in measures to cope with global warming,' The Sep. Technol., 27(5), 312-319(1997)
  16. Teramoto, M., Ohikshi, N., Takeuchi, N., Kitada, S., Matsuyama, H., Matsumiya, N., and Mano, H., 'Separation and enrichment of carbon dioxide by capillary membrane module with permeation of carrier solution,' Sep. Purif. Technol., 30(3), 215-227(2003) https://doi.org/10.1016/S1383-5866(02)00144-2
  17. Damen, K., Troost, van M., Faaij, A., and Turkenburg, W., 'A comparison of electricity and hydrogen production systems with $CO_2$ capture and storage. Part A: Review and selection of promising conversion and capture technologies,' Prog. Energy. Combust., 32(2), 215-246(2006) https://doi.org/10.1016/j.pecs.2005.11.005
  18. Kvamsdal, H. M., Jordal, K., and Bolland, O., 'A quantitative comparison of gas turbine cycles with $CO_2$ capture,' Energy, 32(1), 10-24(2007) https://doi.org/10.1016/j.energy.2006.02.006
  19. Singh, D., Croiset, E., Douglas, P. L., and Douglas, M. A., 'Techno-economic study of $CO_2$ capture from an existing coal-fired power plant: MEA scrubbing vs. $O_2/CO_2$ recycle combustion,' Energ. Convers. Manage., 44(19), 3073-3091(2003) https://doi.org/10.1016/S0196-8904(03)00040-2
  20. Lozza, G. and Chiesa, P., 'Natural gas decarbonization to reduce $CO_2$ emission from combined cycles-Part I: Partial oxidation,' J. Eng. Gas Turb. Power, 124(1) 82-88(2002) https://doi.org/10.1115/1.1395581