• Title/Summary/Keyword: cDNA microarray analysis

Search Result 227, Processing Time 0.023 seconds

Microarray Analysis of Gene Expression by Ginseng Water Extracts in a Mouse Adrenal Cortex after Immobilization Stress

  • Kim, Young-Ock;Lee, Sang-Won
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.111-123
    • /
    • 2011
  • To investigate the effects of repeated immobilization-stress challenge on the the hypothalamic-pituitary-adrenal axis, the genomic transcriptome in the adrenal cortex of immobilization-stressed mouse was analyzed by using a cDNA microarray. Mice were subjected to immobilization stress for 2 h per day for 5 consecutive d. With a 4.0-fold cutoff of arbitrary criteria, the expression levels of 168 out of 41,174 genes were significantly modulated in the adrenal cortex by stress when comparing the control and experimental groups. These genes were related to apoptosis, cell cycle, immune response, inflammatory responses, and signal transduction, and thus may be used as potential targets for the development of therapeutics for chronic stress or depression. Six significant genes among these were selected for real time polymerase chain reaction analysis to confirm the change of their expression levels. The gene for phospho 1 was also further investigated because its expression showed the greatest fold-change.

Differential gene expression pattern in brains of acrylamide-administered mice

  • Han, Chang-Hoon
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.2
    • /
    • pp.99-104
    • /
    • 2012
  • The present study was performed to evaluate the relationship between the neurotoxicity of acrylamide and the differential gene expression pattern in mice. Both locomotor test and rota-rod test showed that the group treated with higher than 30 mg/kg/day of acrylamide caused impaired motor activity in mice. Based on cDNA microarray analysis of mouse brain, myelin basic protein gene, kinesin family member 5B gene, and fibroblast growth factor (FGF) 1 and its receptor genes were down-regulated by acrylamide. The genes are known to be essential for neurofilament synthesis, axonal transport, and neuroprotection, respectively. Interestingly, both FGF 1 and its receptor genes were down-regulated. Genes involved in nucleic acid binding such as AU RNA binding protein/enoyl-coA hydratase, translation initiation factor (TIF) 2 alpha kinase 4, activating transcription factor 2, and U2AF 1 related sequence 1 genes were down-regulated. More interesting finding was that genes of both catalytic and regulatory subunit of protein phosphatases which are important for signal transduction pathways were down-regulated. Here, we propose that acrylamide induces neurotoxicity by regulation of genes associated with neurofilament synthesis, axonal transport, neuro-protection, and signal transduction pathways.

Analysis of 2,3,7,8-Tetrachlorodibenzo-P-Dioxin Induced Gene Expression Profile in Hairless Mice Skin Using Pathway Specific cDNA Microarray

  • Ryeom, Tai-Kyung;Kang, Ho-Il;Kang, Mi-Kyung;Eom, Mi-Ok;Park, Mi-Sun;Jee, Seung-Wan;Kim, Ok-Hee
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.179-179
    • /
    • 2003
  • 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin (TCDD) displays high toxicity in animals and has been implicated in human carcinogenesis. Although the mechanisms of TCDD-induced carcinogenesis are poorly understood, it considered to be non-genotoxic and tumor promoter. In this study, we investigated the tumor promotion effect of TCDD on the two-stage skin chemical carcinogenesis using hairless mouse (SKH1).(omitted)

  • PDF

Profile of Gene Expression Changes Treated with Compound K Induced Cell Cycle Arrest and Cell Death of Prostate Cancer PC-3 Cell Line (인간 전립선암 PC-3 세포에서 Compound K에 의한 세포주기 조절 및 세포사멸 유전자 발현 변화)

  • Kim, Kwang-Youn;Park, Kwang-Il;Ahn, Soon-Cheol
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.267-275
    • /
    • 2021
  • Objectives : Previously, we reported that compound K isolated from fermented ginseng by Aspillus oryzae has a wide biochemical and pharmacological effect, including anti-cancer activity in prostate cancer PC-3 cells. Despite these findings, its signaling pathway and gene expression pattern are not clearly understood. Methods : To confirm the gene expression study of treated with compound K in PC-3 cells, a cDNA microarray chip composed of 44K human cDNA probes was used. MTT assay, western blot analysis, propidium iodide staining, and annexin V/propidium iodide staining were analyzed. Results : We confirmed the differences of gene expression profiles. Then, we analyzed with the cell cycle arrest, cell death and cell proliferation related genes using DAVID database. Conclusions : Our finding should be useful for understanding genome-wide expression patterns of compound K-mediated cell cycle arrest toward induction of cell death and be helpful for finding future cancer therapeutic targets for prostate cancer cells.

Soluble fraction from silk mat induced bone morphogenic protein in RAW264.7 cells

  • Kim, Seong-Gon;Jo, You-Young;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.41 no.2
    • /
    • pp.51-55
    • /
    • 2020
  • The objective of this study was to evaluate the changes in gene expression after incubation of cells with soluble fraction from different silk mat layers. A silk cocoon from Bombyx mori was separated into 4 layers of equal thickness. The layers were numbered from 1 to 4 (from the inner to outer layer). Each silk mat was placed into normal saline and collected soluble fraction. They were administered to RAW264.7 cells, and changes in the expression of genes were evaluated by cDNA microarray analysis. Layer 1 and 4 groups showed significantly higher expression of BMP-2 at 8 h after administration of soluble fraction (P < 0.05). Runx2 expression was significantly higher in Layer 4 group at 8h (P < 0.05). The silk mat from the innermost and outermost portion of the silkworm cocoon showed a significant change in the expression of genes that are associated with osteoinduction such as BMP-2 and runx2.

Microarray Analysis of Differentially Expressed Genes between Cysts and Trophozoites of Acanthamoeba castellanii

  • Moon, Eun-Kyung;Xuan, Ying-Hua;Chung, Dong-Il;Hong, Yeon-Chul;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.4
    • /
    • pp.341-347
    • /
    • 2011
  • Acanthamoeba infection is difficult to treat because of the resistance property of Acanthamoeba cyst against the host immune system, diverse antibiotics, and therapeutic agents. To identify encystation mediating factors of Acanthamoeba, we compared the transcription profile between cysts and trophozoites using microarray analysis. The DNA chip was composed of 12,544 genes based on expressed sequence tag (EST) from an Acanthamoeba ESTs database (DB) constructed in our laboratory, genetic information of Acanthamoeba from TBest DB, and all of Acanthamoeba related genes registered in the NCBI. Microarray analysis indicated that 701 genes showed higher expression than 2 folds in cysts than in trophozoites, and 859 genes were less expressed in cysts than in trophozoites. The results of real-time PCR analysis of randomly selected 9 genes of which expression was increased during cyst formation were coincided well with the microarray results. Eukaryotic orthologous groups (KOG) analysis showed an increment in T article (signal transduction mechanisms) and O article (posttranslational modification, protein turnover, and chaperones) whereas significant decrement of C article (energy production and conversion) during cyst formation. Especially, cystein proteinases showed high expression changes (282 folds) with significant increases in real-time PCR, suggesting a pivotal role of this proteinase in the cyst formation of Acanthamoeba. The present study provides important clues for the identification and characterization of encystation mediating factors of Acanthamoeba.

Microarray Analysis of Gene Expression in Rat Glioma after Ethanol Treatment (에탄올 처리에 의한 흰쥐 신경아교종(Glioma) 세포에서의 유전자 발현 - DNA 칩을 이용한 분석 -)

  • Lee, So Hee;Oh, Dong-Yul;Han, Jin-Hee;Choi, Ihn-Geun;Jeon, Yang-Whan;Lee, Joon-Noh;Lee, Tae Kyung;Jeong, Jong-Hyun;Jung, Kyung Hwa;Chai, Young-Gyu
    • Korean Journal of Biological Psychiatry
    • /
    • v.14 no.2
    • /
    • pp.115-121
    • /
    • 2007
  • Objetives : Identification of target genes for ethanol in neurons is important for understanding its molecular and cellular mechanism of action and the neuropathological changes seen in alcoholics. The purpose of this study is to identify of altered gene expression after acute treatmet of ethanol in rat gliom cells. Methods : We used high density cDNA microarray chip to measure the expression patterns of multiple genes in cultured rat glioma cells. DNA microarrays allow for the simultaneous measurement of the expression of several hundreds of genes. Results : After comparing hybridized signals between control and ethanol treated groups, we found that treatment with ethanol increased the expression of 15 genes and decreased the expression of 12 genes. Upregulated genes included Orthodenticle(Drosophila) homolog 1, procollagen type II, adenosine A2a receptor, GATA bindning protein 2. Downregulated genes included diacylglycerol kinase beta, PRKC, Protein phosphatase 1, clathrin-associated protein 17, nucleoporin p58, proteasome. Conclusion : The gene changes noted were those related to the regulation of transcription, signal transduction, second messenger systems. modulation of ischemic brain injury, and neurodengeneration. Although some of the genes were previously known to be ethanol responsive, we have for the most part identified novel genes involved in the brain response to ethanol.

  • PDF

Microarray Profiling of Genes Differentially Expressed during Erythroid Differentiation of Murine Erythroleukemia Cells

  • Heo, Hyen Seok;Kim, Ju Hyun;Lee, Young Jin;Kim, Sung-Hyun;Cho, Yoon Shin;Kim, Chul Geun
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.57-68
    • /
    • 2005
  • Murine erythroleukemia (MEL) cells are widely used to study erythroid differentiation thanks to their ability to terminally differentiate in vitro in response to chemical induction. At the molecular level, not much is known of their terminal differentiation apart from activation of adult-type globin gene expression. We examined changes in gene expression during the terminal differentiation of these cells using microarray-based technology. We identified 180 genes whose expression changed significantly during differentiation. The microarray data were analyzed by hierarchical and k-means clustering and confirmed by semi-quantitative RT-PCR. We identified several genes including H1f0, Bnip3, Mgl2, ST7L, and Cbll1 that could be useful markers for erythropoiesis. These genetic markers should be a valuable resource both as potential regulators in functional studies of erythroid differentiation, and as straightforward cell type markers.

Molecular Biomarkers of Octachlorostyrene Exposure in Medaka, Oryzias latipes, using Microarray Technique (Microarray를 이용한 Octachlorostyrene-노출 송사리(Oryzias latipes)에서의 분자생물학적 지표연구)

  • You Dae-Eun;Kang Misun;Park Eun-Jung;Kim IL-Chan;Lee Jae-Seong;Park Kwangsik
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.2 s.49
    • /
    • pp.187-194
    • /
    • 2005
  • Octachlorostyrene (OCS) is a primarily concerning chemical in many countries because of its persistent and bioaccumulative properties in the environment. OCS is not commercially manufactured or used but it may be produced during incineration or chemical synthetic processes involving chlorinated compounds. There are several reports that OCS was found in the waters, sediments, fish, mussels, and also in human tissues. However, systematic studies on the OCS toxicities are scarce in literature. In this study, we tried to get the gene expression data using medaka DNA chip to identify biomarkers of OCS exposure. Medaka (Oryzias latipes.) was exposed to OCS 1 ppm for 2 days and 10 days, respectively. Total RNA was extracted and purified by guanidine thiocyanate method and the Cy3- and Cy5-labelled cDNAs produced by reverse trancription of the RNA were hybridized to medaka microarray. As results, eighty five genes were found to be down-or up regulated by OCS. Some of the genes were listed and confirmed by real-time PCR.

Screening of Differentially Expressed Genes Related to Bladder Cancer and Functional Analysis with DNA Microarray

  • Huang, Yi-Dong;Shan, Wei;Zeng, Li;Wu, Yang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4553-4557
    • /
    • 2013
  • Objective: The purpose of this study was to identify genes related to bladder cancer with samples from normal and disease cases by microarray chip. Methods: After downloading the gene expression profile GSE3167 from Gene Expression Omnibus database which includes 50 bladder samples, comprising 9 normal and 41 disease samples, differentially expressed genes were identified with packages in R language. The selected differentially expressed genes were further analyzed using bioinformatics methods. Firstly, molecular functions, biological processes and cell component analysis were researched by software Gestalt. Then, software String was used to search interaction relationships among differentially expressed genes, and hub genes of the network were selected. Finally, by using plugins of software Cytoscape, Mcode and Bingo, module analysis of hub-genes was performed. Results: A total of 221 genes were identified as differentially expressed by comparing normal and disease bladder samples, and a network as well as the hub gene C1QBP was obtained from the network. The C1QBP module had the closest relationship to production of molecular mediators involved in inflammatory responses. Conclusion: We obtained differentially expressed genes of bladder cancer by microarray, and both PRDX2 and YWHAZ in the module with hub gene C1QBP were most significantly related to production of molecular mediators involved in inflammatory responses. From knowledge of inflammatory responses and cancer, our results showed that, the hub gene and its module could induce inflammation in bladder cancer. These related genes are candidate bio-markers for bladder cancer diagnosis and might be helpful in designing novel therapies.