• Title/Summary/Keyword: bumps

Search Result 264, Processing Time 0.023 seconds

Postmetacercarial changes in Echinostoma caproni maintained in a defined medium plus calf serum

  • Fried, Bernard;Reddy, Aditya
    • Parasites, Hosts and Diseases
    • /
    • v.38 no.3
    • /
    • pp.173-175
    • /
    • 2000
  • The present study examined postmetacercarial changes in the excysted metacercariae of Echinostoma caproni maintained in the defined medium Mixture 199 plus 20% calf serum for 7 days at $41^{\circ}C$. The gas phase was atmospheric air. Each culture was inoculated with 25 excysted metacerariae. Cultures were maintained upright in closed 15 ml plastic centrifuge tubes each containing 10 ml of medium plus 200 units of penicillin/ml and $200{\;}\mu\textrm{g}$ of streptomycin/ml. By 4 days in culture, most metacercariae had voided their excretory concretions. Organisms were clumped or solitary at the bottom of the cultures. Many organisms showed flaring of the oral collar and extension of both the collar and tegumentary spines. By 4 days in culture, posterior protuberances or bumps were noted on many of the organisms and some organisms showed abnormal vesicular growths or blebs at their posterior ends. Some mortality was noted in culture by day 5, but most organisms were still alive when the cultures were terminated on day 7.

  • PDF

Formation of Sn Through-Silicon-Via and Its Interconnection Process for Chip Stack Packages (칩 스택 패키지용 Sn 관통-실리콘-비아 형성공정 및 접속공정)

  • Kim, Min-Young;Oh, Taek-Soo;Oh, Tae-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.557-564
    • /
    • 2010
  • Formation of Sn through-silicon-via (TSV) and its interconnection processes were studied in order to form a three-dimensional interconnection structure of chip-stack packages. Different from the conventional formation of Cu TSVs, which require a complicated Cu electroplating process, Sn TSVs can be formed easily by Sn electroplating and reflow. Sn via-filling behavior did not depend on the shape of the Sn electroplated layer, allowing a much wider process window for the formation of Sn TSVs compared to the conventional Cu TSV process. Interlocking joints were processed by intercalation of Cu bumps into Sn vias to form interconnections between chips with Sn TSVs, and the mechanical integrity of the interlocking joints was evaluated with a die shear test.

A Flip Chip Process Using an Interlocking-Joint Structure Locally Surrounded by Non-conductive Adhesive (비전도성 접착제로 국부적으로 둘러싸인 인터록킹 접속구조를 이용한 플립칩 공정)

  • Choi, Jung-Yeol;Oh, Tae-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.785-792
    • /
    • 2012
  • A new flip chip structure consisting of interlocking joints locally surrounded by non-conductive adhesive was investigated in order to improve the contact resistance characteristics and prevent the parasitic capacitance increase. The average contact resistance of the interlocking joints was substantially reduced from $135m{\Omega}$ to $79m{\Omega}$ by increasing the flip chip bonding pressure from 85 MPa to 185 MPa. Improvement of the contact resistance characteristics at higher bonding pressure was attributed not only to the increased contact area between Cu chip bumps and Sn pads, but also to the severe plastic deformation of Sn pads caused during formation of the interlocking-joint structure. The parasitic capacitance increase due to the non-conductive adhesive locally surrounding the flip chip joints was estimated to be as small as 12.5%.

Rough surface characterization using off-axis digital holographic microscopy compensated with self-hologram rotation

  • Ibrahim, Dahi Ghareab Abdelsalam
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1261-1267
    • /
    • 2018
  • In this paper, an off-axis digital holographic microscopy compensated with self-hologram rotation is presented. The process is implemented via subtracting the unwrapped phase maps of the off-axis parabolic hologram and its rotation $180^{\circ}$ to eliminate the tilt induced by the angle between the spherical object wave O and the plane reference wave R. Merit of the proposed method is that it can be done without prior knowledge of physical parameters and hence can reconstruct a parabolic hologram of $1024{\times}768$ pixels within tens of milliseconds since it doesn't require a digital reference wave. The method is applied to characterize rough gold bumps and the obtained results were compared with those extracted from the conventional reconstruction method. The comparison showed that the proposed method can characterize rough surfaces with excellent contrast and in realtime. Merit of the proposed method is that it can be used for monitoring smaller biological cells and micro-fluidic devices.

Effect of Under Bump Metallization (UBM) on Interfacial Reaction and Shear Strength of Electroplated Pure Tin Solder Bump (전해 도금된 주석 솔더 범프의 계면 반응과 전단 강도에 미치는 UBM의 효과)

  • Kim, Yu-Na;Koo, Ja-Myeong;Park, Sun-Kyu;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • The interfacial reactions and shear strength of pure Sn solder bump were investigated with different under bump metallizations (UBMs) and reflow numbers. Two different UBMs were employed in this study: Cu and Ni. Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) were formed at the bump/Cu UBM interface, whereas only a Ni3Sn4 IMC was formed at the bump/Ni UBM interface. These IMCs grew with increasing reflow number. The growth of the Cu-Sn IMCs was faster than that of the Ni-Sn IMC. These interfacial reactions greatly affected the shear properties of the bumps.

Influence of Slip Angle on Abrasion Behavior of NR/BR Vulcanizates

  • Eunji Chae;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Abrasion tests of model tire tread compounds (NR and NR/BR blend compounds) were performed at different slip angles (1° and 7°) using a laboratory abrasion tester. The abrasion behavior was investigated by analyzing the worn surface and wear particles. The abrasion spacing formed on the specimen worn at the large slip angle of 7° was significantly narrower than that at the small slip angle of 1°, while the abrasion depth for the specimen worn at 7° was lower than that at 1°. The abrasion spacing and depth tended to be narrower and lower, respectively, as the BR content increased. The abrasion patterns were clearly visible on the outside of the specimen for the slip angle of 1° but not for 7°. The wear particles had a rough surface and there were numerous micro-bumps. It was found that the crosslink density affected the abrasion patterns and morphologies of the wear particles.

Recent Progress of Hybrid Bonding and Packaging Technology for 3D Chip Integration (3D 칩 적층을 위한 하이브리드 본딩의 최근 기술 동향)

  • Chul Hwa Jung;Jae Pil Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.38-47
    • /
    • 2023
  • Three dimensional (3D) packaging is a next-generation packaging technology that vertically stacks chips such as memory devices. The necessity of 3D packaging is driven by the increasing demand for smaller, high-performance electronic devices (HPC, AI, HBM). Also, it facilitates innovative applications across another fields. With growing demand for high-performance devices, companies of semiconductor fields are trying advanced packaging techniques, including 2.5D and 3D packaging, MR-MUF, and hybrid bonding. These techniques are essential for achieving higher chip integration, but challenges in mass production and fine-pitch bump connectivity persist. Advanced bonding technologies are important for advancing the semiconductor industry. In this review, it was described 3D packaging technologies for chip integration including mass reflow, thermal compression bonding, laser assisted bonding, hybrid bonding.

  • PDF

Control of Position of Neutral Line in Flexible Microelectronic System Under Bending Stress (굽힘응력을 받는 유연전자소자에서 중립축 위치의 제어)

  • Seo, Seung-Ho;Lee, Jae-Hak;Song, Jun-Yeob;Lee, Won-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • A flexible electronic device deformed by external force causes the failure of a semiconductor die. Even without failure, the repeated elastic deformation changes carrier mobility in the channel and increases resistivity in the interconnection, which causes malfunction of the integrated circuits. Therefore it is desirable that a semiconductor die be placed on a neutral line where the mechanical stress is zero. In the present study, we investigated the effects of design factors on the position of neutral line by finite element analysis (FEA), and expected the possible failure behavior in a flexible face-down packaging system assuming flip-chip bonding of a silicon die. The thickness and material of the flexible substrate and the thickness of a silicon die were considered as design factors. The thickness of a flexible substrate was the most important factor for controlling the position of the neutral line. A three-dimensional FEA result showed that the von Mises stress higher than yield stress would be applied to copper bumps between a silicon die and a flexible substrate. Finally, we suggested a designing strategy for reducing the stress of a silicon die and copper bumps of a flexible face-down packaging system.

Effect of Coolants and Metal Bumps on the heat Removal of Liquid Cooled Microchannel System (액랭식 마이크로채널 시스템 내 냉매와 범프의 열 제거 효과에 대한 연구)

  • Won, Yonghyun;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.61-67
    • /
    • 2017
  • As transistor density increases rapidly, a heat flux from IC device rises at fast rate. Thermal issues raised by high heat flux cause IC's performance and reliability problems. To solve these thermal management problems, the conventional cooling methods of IC devices were reached their thermal limit. As a result, alternative cooling methods such as liquid heat pipe, thermoelectric cooler, thermal Si via and etc. are currently emerging. In this paper microchannel liquid cooling system with TSV was investigated. The effects of 2 coolants (DI water and ethylene glycol 70 wt%) and 3 metal bumps (Ag, Cu, Cr/Au/Cu) on cooling performance were studied, and the total heat flux of various coolant and bump cases were compared. Surface temperature of liquid cooling system was measured by infrared microscopy, and liquid flowing through microchannel was observed by fluorescence microscope. In the case of ethylene glycol 70 wt% at $200^{\circ}C$ heating temperature, the total heat flux was $2.42W/cm^2$ and most of total heat flux was from liquid cooling effect.

Development of Smart Speed Bump Using Non-newtonian Fluid (비뉴턴 유체를 이용한 스마트 과속방지턱 소재 개발)

  • Jung, Injun;Kim, Eunjung;Yu, Woong-Ryeol;Na, Wonjin
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 2022
  • In this study, a smart material applicable to speed bumps was developed using low-cost starch and waterbased suspensions, and their properties were investigated. Viscosity and shear stress according to the shear rate was measured by a rheometer to observe shear thickening behavior according to starch concentration. The shear thickening phenomenon and applicability to speed bumps were identified macroscopically via drop weight test and bike driving test, measuring the vibration after impact with a driving speed of 5-25 km/h. As a result of the viscosity measurement, shear thickening occurred after the shear thinning region at the beginning, and the critical strain causing the shear thickening phenomenon decreased as the concentration of starch increased. Also, the viscosity and shear stress increased significantly with the increase of the starch concentration. As a result of the drop weight test and the bike driving test, the suspension was changed to a solid-like state in a short time, and the impact energy was absorbed in the fluid. The shear thickening phenomenon easily occurred as the concentration of the fluid and the applied impact (velocity) increased. Therefore, it can be proposed the development of a smart speed bump material that operates in the range of 5-25 km/h with a Non-Newtonian fluid based on water and starch.