DOI QR코드

DOI QR Code

Rough surface characterization using off-axis digital holographic microscopy compensated with self-hologram rotation

  • Received : 2018.05.19
  • Accepted : 2018.07.05
  • Published : 2018.11.30

Abstract

In this paper, an off-axis digital holographic microscopy compensated with self-hologram rotation is presented. The process is implemented via subtracting the unwrapped phase maps of the off-axis parabolic hologram and its rotation $180^{\circ}$ to eliminate the tilt induced by the angle between the spherical object wave O and the plane reference wave R. Merit of the proposed method is that it can be done without prior knowledge of physical parameters and hence can reconstruct a parabolic hologram of $1024{\times}768$ pixels within tens of milliseconds since it doesn't require a digital reference wave. The method is applied to characterize rough gold bumps and the obtained results were compared with those extracted from the conventional reconstruction method. The comparison showed that the proposed method can characterize rough surfaces with excellent contrast and in realtime. Merit of the proposed method is that it can be used for monitoring smaller biological cells and micro-fluidic devices.

Keywords

References

  1. R. Guo, F. Wang, Compact and stable real-time dual-wavelength digital holographic microscopy with a long working distance objective, Opt. Exp. 25 (2017) 24512-24520. https://doi.org/10.1364/OE.25.024512
  2. D.G. Abdelsalam, R. Magnusson, D. Kim, Single-shot, dual-wavelength digital holography based on polarizing separation, Appl. Opt. 50 (2011) 3360-3368. https://doi.org/10.1364/AO.50.003360
  3. P. Gao, B. Yao, J. Min, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Ye, Autofocusing of digital holographic microscopy based on off-axis illuminations, Opt. Lett. 37 (2012) 3630-3632. https://doi.org/10.1364/OL.37.003630
  4. D.G. Abdelsalam, J. Min, D. Kim, B. Yao, Digital holographic shape measurement using Fizeau microscopy, Chin. Optic Lett. 13 (2015) 100701-100705. https://doi.org/10.3788/COL201513.100701
  5. Xiao-ou Cai, Reduction of speckle noise in the reconstructed image digital holography, Optik 121 (2010) 394-399. https://doi.org/10.1016/j.ijleo.2008.07.026
  6. T. Kozacki, R. Jozwicki, Digital reconstruction of a hologram recorded using partially coherent illumination, Opt. Commun. 252 (2005) 188-201. https://doi.org/10.1016/j.optcom.2005.04.003
  7. J. Garcia-Sucerquia, J.A.H. Ramirez, D.V. Prieto, Reduction of speckle noise in digital holography by using digital image processing, Optik 116 (2005) 44-48. https://doi.org/10.1016/j.ijleo.2004.12.004
  8. D.G. Abdelsalam, D. Kim, Real-time dual-wavelength digital holographic microscopy based on polarizing separation, Opt. Commun. 285 (2012) 233-237. https://doi.org/10.1016/j.optcom.2011.09.044
  9. A. Uzan, Y. Rivenson, A. Stern, Speckle denoising in digital holography by nonlocal means filtering, Appl. Opt. 52 (2013) A195-A200. https://doi.org/10.1364/AO.52.00A195
  10. J. Maycock, B.M. Hennelly, J.B. McDonald, Y. Frauel, A. Castro, B. Javidi, T.J. Naughton, Reduction of speckle in digital holography by discrete Fourier filtering, J. Opt. Soc. Am. A 24 (2007) 1617-1622. https://doi.org/10.1364/JOSAA.24.001617
  11. Q. Kemao, Windowed Fourier transform for fringe pattern analysis, Appl. Opt. 43 (2004) 2695-2702. https://doi.org/10.1364/AO.43.002695
  12. D. Deng, W. Qu, W. He, Y. Wu, X. Liu, X. Peng, Off-axis tilt compensation in common-path digital holographic microscopy based on hologram rotation, Opt. Lett. 42 (2017) 5282-5285. https://doi.org/10.1364/OL.42.005282
  13. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, G. Pierattini, Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging, Appl. Opt. 42 (2003) 1938-1946. https://doi.org/10.1364/AO.42.001938
  14. A. Stadelmaier, J.H. Massig, Compensation of lens aberrations in digital holography, Opt. Lett. 25 (2000) 1630-1632. https://doi.org/10.1364/OL.25.001630
  15. S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, P. Ferraro, Recovering correct phase information in multi-wavelength digital holographic microscopy by compensation for chromatic aberrations, Opt. Lett. 30 (2005) 2706-2708. https://doi.org/10.1364/OL.30.002706
  16. S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase shifting digital holography, Opt. Lasers Eng. 37 (2002) 331-340. https://doi.org/10.1016/S0143-8166(01)00087-2
  17. T. Colomb, F. Montfort, J. Kuhn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, C. Depeursinge, Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy, J. Opt. Soc. Am. A 23 (2006) 3177-3190. https://doi.org/10.1364/JOSAA.23.003177
  18. M. Hutter, H. Oppermann, G. Engelmann, J. Wolf, O. Ehrmann, R. Aschenbrenner, H. Reichl, Calculation of Shape and Experimental Creation of AuSn Solder Bumps for Flip Chip Applications, Proc 52nd Electronic Components and Technology Conf, San Diego, 2002.
  19. Fatemeh Ansari, Mehdi Bazarganipour, Masoud Salavati-Niasari, NiTiO3/NiFe2O4 nanocomposites: simplesol-gelauto-combustion synthesis and characterization by utilizing onion extract as a novel fuel and green capping agent, Mater. Sci. Semicond. Process. 43 (2016) 34-40. https://doi.org/10.1016/j.mssp.2015.11.014
  20. Fatemeh Ansari, Pariya Nazari, Masoud Payandeh, Farzad Mardekatani Asl, Bahram Abdollahi-Nejand, Vahid Ahmadi, Jalal Taghiloo, Masoud Salavati-Niasari, Novel nanostructured electron transport compact layer for efficient and large-area perovskite solar cells using acidic treatment of titanium layer, Nanotechnology 29 (2018) 075404. https://doi.org/10.1088/1361-6528/aaa230
  21. Takeshi Tayagaki, Kikuo Makita, Hidenori Mizuno, Takeyoshi Sugaya, Investigation of the properties of semiconductor wafer bonding in multijunction solar cells via metal-nanoparticle arrays, J. Appl. Phys. 122 (2017) 023101. https://doi.org/10.1063/1.4992805
  22. Fatemeh Ansari, Sobhani Azam, Masoud Salavati-Niasari, Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents, J. Colloid Interface Sci. 514 (2018) 723-732. https://doi.org/10.1016/j.jcis.2017.12.083
  23. ISO 10110-8, Optics and Photonics- Preparation of Drawings for Optical Elements and Systems- Part 8: Surface Texture, (1997).
  24. T. Dresel, G. Hausler, H. Venzke, Three-dimensional sensing of rough surfaces by coherence radar, Appl. Opt. 31 (1992) 919-925. https://doi.org/10.1364/AO.31.000919
  25. P.J. Caber, Interferometric profiler for rough surfaces, Appl. Opt. 32 (1993) 3438-3441. https://doi.org/10.1364/AO.32.003438
  26. L. Deck, P. de Groot, High-speed non-contact profiler based on scanning white light interferometry, Appl. Opt. 33 (1994) 7334-7338. https://doi.org/10.1364/AO.33.007334
  27. Jose M. Bioucas-dias, Senior Member, IEEE, Goncalo Valadao, Phase unwrapping via graph cuts, IEEE Trans. Image Process. 16 (2007) 698-709. https://doi.org/10.1109/TIP.2006.888351
  28. D.G. Abdelsalam, M.S. Shaalan, M.M. Eloker, D. Kim, Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection, Optic Laser. Eng. 48 (2010) 643-649. https://doi.org/10.1016/j.optlaseng.2010.02.007
  29. S. Chris, B. Toby, Fundamentals of Digital Image Processing, Wiley-Blackwell, 2011 978470844724.
  30. G. Coppola, G. Di Caprio, M. Gioffre, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizo, P. Ferraro, Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction, Opt. Lett. 35 (2010) 3390-3392. https://doi.org/10.1364/OL.35.003390

Cited by

  1. Simultaneous dual-wavelength digital holographic microscopy with compensation of chromatic aberration for accurate surface characterization vol.58, pp.23, 2019, https://doi.org/10.1364/ao.58.006388
  2. Estimation of an uncertainty budget and performance measurement for a dual‐wavelength Twyman‐Green interferometer vol.282, pp.3, 2018, https://doi.org/10.1111/jmi.12997