• Title/Summary/Keyword: building site

Search Result 2,253, Processing Time 0.028 seconds

Joint Reasoning of Real-time Visual Risk Zone Identification and Numeric Checking for Construction Safety Management

  • Ali, Ahmed Khairadeen;Khan, Numan;Lee, Do Yeop;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.313-322
    • /
    • 2020
  • The recognition of the risk hazards is a vital step to effectively prevent accidents on a construction site. The advanced development in computer vision systems and the availability of the large visual database related to construction site made it possible to take quick action in the event of human error and disaster situations that may occur during management supervision. Therefore, it is necessary to analyze the risk factors that need to be managed at the construction site and review appropriate and effective technical methods for each risk factor. This research focuses on analyzing Occupational Safety and Health Agency (OSHA) related to risk zone identification rules that can be adopted by the image recognition technology and classify their risk factors depending on the effective technical method. Therefore, this research developed a pattern-oriented classification of OSHA rules that can employ a large scale of safety hazard recognition. This research uses joint reasoning of risk zone Identification and numeric input by utilizing a stereo camera integrated with an image detection algorithm such as (YOLOv3) and Pyramid Stereo Matching Network (PSMNet). The research result identifies risk zones and raises alarm if a target object enters this zone. It also determines numerical information of a target, which recognizes the length, spacing, and angle of the target. Applying image detection joint logic algorithms might leverage the speed and accuracy of hazard detection due to merging more than one factor to prevent accidents in the job site.

  • PDF

Information Constitution of Daily Job-Site Report for Specialty Contractors (전문건설업체 작업일보의 정보구성에 관한 연구)

  • Lee, Kang-Min;Shin, Won-Sang;Lee, Dong-Eun;Kim, Dae-Young;Son, Chang-Baek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.279-280
    • /
    • 2012
  • The Construction Standard Production Unit(CSPU) has been used for the standard cost estimate in public and private construction projects. However, It is questionable if the reliability and/or authenticity of the system is acceptable due to the lack of consistent enactment and/or revision procedures. This study identifies informational conditions and issues relative to using daily work report as a data collection method for enacting and/or revising CSPU system, and establishes the measures for improving the daily work report. This study aims on the information constitution of daily job-site report, daily manpower report, wages register for specialty contractors. According to the research results, most of necessary data were included in a daily job-site report. In conclusion, it is investigated that data of daily manpower report and wage register need to be included in a daily job-site report for understanding the current state of worker in the future.

  • PDF

A Case Study on the Effect of Soil Improvement on Anchor Bond Zone (지반개량에 의한 Anchor 정착부 개선효과 사례연구)

  • Kim, Tae-Seob;Song, Sang-Ho;Cho, Kyu-Wan;Lee, Jae-Dong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1008-1013
    • /
    • 2006
  • Ground anchor method is widely used in the large scale deep excavation of urban area to support a retained wall. Excavation using the ground anchor as a supporting system near a building have many difficulties due to the limitation of construction space. This method can not be applied to the site with the insufficient space from the retained wall to the boundary line. In this case, soil improvement at the anchor bond zone can be used to secure the frictional resistance of ground anchor within the boundary. Through this method, the bond length of anchor can be shortened considerably. This paper deals with the case study on the ground excavation adjacent to a building. The object field is Yongsan Park Tower Construction Site. In this site, the enlarged anchor with soil improvement was applied to solve the problem due to the limitation of construction space. According to the results of field test and monitoring, the anchor with soil improvement is very effective to secure the frictional resistance at the anchor bond zone.

  • PDF

A Basic Study on Quantification Risk Model of Human Accidents on Exterior Construction Site in South Korea (국내 건설현장 내·외부 인명사고 리스크 정량화 모델 개발 기초연구)

  • Oh, Jun-Seok;Ha, Sun-Geun;Kim, Tae-Hee;Jeon, Sang-Sub;Kim, Ji-Myung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.132-133
    • /
    • 2018
  • Many studies regarding construction safety management have been conducted. However, it is insufficient to research on external construction site. As a result, ordinary people around the construction site have injured and have a negative view when they think construction industrial since it has regarded having an overfull industrial accidents on media. To break the stereotype and prevention of accident on construction industry have been emphasized at this point in time, it is necessary to establish a comprehensive safety management system which is considered not only internal safety management but also external safety management. Therefore, the objective of this study is to develop the human accident risk quantification model by utilizing the third party payout data which occurred by incomplete safety management on external construction site. This study is conducted as a basic study for developing safety management manuals on internal·external construct site. In the future, it is expected to be used as a reference.

  • PDF

A Productivity Analysis for Management Manpower of Building Construction Projects (건축공사의 현장관리 인력에 대한 생산성 분석)

  • Lee, Hyun-Min;Lee, Dong-Hoon;ZHENG, QI;Kim, Sun-Kuk
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.45-55
    • /
    • 2010
  • While Korean construction companies are adapting themselves to rapidly changing business landscape at home and abroad, intensifying competition among competitors in local as well as global market deteriorates the profitability of construction industry, which leads to another problem. In response to such challenges, many construction companies continue to innovate their business portfolio and organization structure, with strong commitment to business process innovation. Furthermore, they need to analyze the productivity of project site management manpower overhauling business processes systematically and develop effective alternative strategies. This research aims to analyze the productivity of project site management manpower. Current operational practices of construction site organizations have been analyzed with focus on large construction companies in Korea and data gathered from project sites have been analyzed from a wide range of perspectives, In so doing, this research is expected to provide basic inputs for any subsequent attempt to estimate proper resource requirement for site management tasks in construction projects and analyze the management productivity of such resources by enabling construction companies to better understand the current operational status of site organization.

Rethinking the Construction Period of the Ondol Heating System at Hoeamsa Monastery Site (회암사지 온돌의 조성시기에 관한 연구)

  • Lim, Jun-Gu;Kim, Young-Jae
    • Journal of architectural history
    • /
    • v.31 no.1
    • /
    • pp.19-28
    • /
    • 2022
  • The construction period of the ondol (Korean floor heating system) at Hoeamsa Temple Site is known as Joseon. The main reason is that a large number of remains in the Joseon era were excavated from the ondol floor with an all-around ondol method. This article partially accepts the theory of the creation of Ondol at Hoeamsa Temple Site during the Joseon Dynasty and suggests a new argument that some Ondol remains were built during the Goryeo Dynasty. The grounds for them are as follows. First, through the building sites consistent with the arrangement of the Cheonbosan Hoeamsa Sujogi (天寶山檜巖寺修造記, Record of Repair and Construction of Hoeamsa at Cheonbosan Mountain), it is highly likely that the ondol remains as a basic floor was maintained during the reconstruction period in Goryeo. Second, the all-around ondol method of the Monastery Site has already been widely used since the Goryeo Dynasty. Third, some ondol remains consist of "Mingaejari" and "Dunbeonggaejari," which were the methods of the gaejari (which dug deeper and stayed in the smoke) in the pre-Joseon Dynasty. Based on the above evidence, this study argues that the building sites such as Dongbangjangji, Seobangjangji, Ipsilyoji, Sijaeyoji, Susewaryoji, Seogiyoji, Seoseungdangji, Jijangryoji, and Hyanghwaryoji were constructed during the late Goryeo Dynasty.

Improving Construction Site Supervision with Vision Processing AI Technology (비전 프로세싱 인공지능 기술을 활용한 건설현장 감리)

  • Lee, Seung-Been;Park, Kyung Kyu;Seo, Min Jo;Choi, Won Jun;Kim, Si Uk;Kim, Chee Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.235-236
    • /
    • 2023
  • The process of construction site supervision plays a crucial role in ensuring safety and quality assurance in construction projects. However, traditional methods of supervision largely depend on human vision and individual experience, posing limitations in quickly detecting and preventing all defects. In particular, the thorough supervision of expansive sites is time-consuming and makes it challenging to identify all defects. This study proposes a new construction supervision system that utilizes vision processing technology and Artificial Intelligence(AI) to automatically detect and analyze defects as a solution to these issues. The system we developed is provided in the form of an application that operates on portable devices, designed to a lower technical barrier so that even non-experts can easily aid construction site supervision. The developed system swiftly and accurately identifies various potential defects at the construction site. As such, the introduction of this system is expected to significantly enhance the speed and accuracy of the construction supervision process.

  • PDF

The Cost Saving Method on Each Building Phase by Analyzing the Cost Structure (비용구조분석에 의한 건축단계별 공사비용 절감방법)

  • Park, Keun-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.1 s.15
    • /
    • pp.97-103
    • /
    • 2005
  • Building costs means capital costs which include cost of land, costs of acquiring and preparing the site, construction costs, professional fees, furnishings, cost of financing the project. and cost of management required to run and maintenance the building for use. There are several phases that determine the building costs : design phase, construction phase, and operation & maintenance phase. So, the cost of work could be set against the examining the full range of complexities that a building program might contain. To solve this problem, it needs to compute building cost systematically. This is still in the development stage, awaiting the organization of rational cost data base. The method of cost saving by cost control could be constituted by detailed knowledge of building costs for all possible combinations of components and subsystems that can be assembled into integration model of cost factor on each phase of project development. The model of cost saving in each building phase is available for procedures of cost control of building systems.

Evaluation of mode-shape linearization for HFBB analysis of real tall buildings

  • Tse, K.T.;Yu, X.J.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.423-441
    • /
    • 2014
  • The high frequency base balance (HFBB) technique is a convenient and relatively fast wind tunnel testing technique for predicting wind-induced forces for tall building design. While modern tall building design has seen a number architecturally remarkable buildings constructed recently, the characteristics of those buildings are significantly different to those that were common when the HFBB technique was originally developed. In particular, the prediction of generalized forces for buildings with 3-dimensional mode shapes has a number of inherent uncertainties and challenges that need to be overcome to accurately predict building loads and responses. As an alternative to the more conventional application of general mode shape correction factors, an analysis methodology, referred to as the linear-mode-shape (LMS) method, has been recently developed to allow better estimates of the generalized forces by establishing a new set of centers at which the translational mode shapes are linear. The LMS method was initially evaluated and compared with the methods using mode shape correction factors for a rectangular building, which was wind tunnel tested in isolation in an open terrain for five incident wind angles at $22.5^{\circ}$ increments from $0^{\circ}$ to $90^{\circ}$. The results demonstrated that the LMS method provides more accurate predictions of the wind-induced loads and building responses than the application of mode shape correction factors. The LMS method was subsequently applied to a tall building project in Hong Kong. The building considered in the current study is located in a heavily developed business district and surrounded by tall buildings and mixed terrain. The HFBB results validated the versatility of the LMS method for the structural design of an actual tall building subjected to the varied wind characteristics caused by the surroundings. In comparison, the application of mode shape correction factors in the HFBB analysis did not directly take into account the influence of the site specific characteristics on the actual wind loads, hence their estimates of the building responses have a higher variability.

Data Standardization of Construction Performance for Optimized Process Management in High-rise Curtain-wall Operations (초고층 커튼월 공정관리 최적화를 위한 건설성능 데이터 표준화)

  • Lee, Tae-Hee;Ko, Yong-Ho;Kim, Young-Suk;Han, Seung-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.283-284
    • /
    • 2012
  • High-rise building construction has been increasing for the recent years and the construction process has become more complicated. This suggests a need for precise planning based on reliable data to prevent cost overruns and delays. However, the process planning is implemented based mainly on the experience of engineers that can result in critical damage in cost and time. Accurate productivity estimation and unit cost analysis must be considered important matter to prevent such disaster. This study estimates productivity and unit cost of curtain wall operations in high-rise building construction by simulation techniques and statistical methodologies. This study suggests a decision making methodology for the site personnel that enables to compare various combinations of productivity and unit cost based on reliable data that has been collected in actual construction sites. It is expected that this study contributes to the following research of developing an optimized construction performance assembling model for the site personnel.

  • PDF