• Title/Summary/Keyword: building information model

Search Result 1,932, Processing Time 0.025 seconds

IFC Model Data Retrieval and Regeneration Method through Property Set-based Query Language (IFC 속성 데이터기반의 질의어 개발을 통한 모델 정보 검색 및 재생성 방안)

  • Lee, Sang-Ho;Park, Sang I.;Jang, Young-Hoon;Choi, Kyou-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.38-46
    • /
    • 2017
  • In this study, a query language was developed to supplement the information retrieval and model regeneration in the case of Industry Foundation Classes (IFC)-based civil infrastructure information models. First, the IFC objects to represent the structural components, entities to manage the related properties, and relationships to connect with the mentioned elements were analyzed in a point of information flow. The results confirmed that the end-users could have problems with access and comprehend the properties and its relationships in the IFC file. Second, the IfcPropertySet-focused query method and applicable stand-alone module were proposed referring to the previous Building Information Model Query Language (BimQL). The availabilities of the proposed method were examined using the rail and sleeper information models through information retrieval and model regeneration. The most important advantage of the proposed approach is the IFC-based information retrievals that can guarantee the interoperability between software packages.

Development of a Voluntary Hazard Assessment Model for Small- and Medium-Sized Ship-building Plants (중소규모 조선업 사업장을 위한 자율 위험성 평가 모델의 개발)

  • Lim, Hyeon-Kyo;Lee, Kyung-Tae;Bae, Dong-Chul;Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.70-76
    • /
    • 2011
  • Industrial accident frequency in small- and medium-sized ship-building plants is much higher than that of large-sized ones so that safety management activities should be different. In that sense, voluntary hazard assessment would be helpful for small- and medium-sized plants. However, conventional hazard assessment items and methods had some problems that discouraged voluntary participation of plants concerned. This study aimed to develop a new model for small- and medium-sized ship-building plants that can promote and encourage voluntary hazard assessment activities. For that purpose, ship-building process was assumed as a sequence of phases, and accident characteristics were compared with them. From that result, relative weights of accident factors including ship-building phases, accident types, occupational category, accident-induced objects, and hazardous items were determined with accident frequency data and with the help of expert groups. Therefore, for web-based integrative computer programming, a plain but accident data-dependent model was developed, with an additive function for related agencies that want to collect assessment results. It is expected that this model would help small- and medium-sized ship-building plants that wanted not only simple checklists but also effective assessment and management guidelines.

Knowledge-Based Model for Forecasting Percentage Progress Costs

  • Kim, Sang-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.518-527
    • /
    • 2012
  • This study uses a hybrid estimation tool for effective cost data management of building projects, and develops a realistic cost estimation model. The method makes use of newly available information as the project progresses, and project cost and percentage progress are analyzed and used as inputs for the developed system. For model development, case-based reasoning (CBR) is proposed, as it enables complex nonlinear mapping. This study also investigates analytic hierarchy process (AHP) for weight generation and applies them to a real project case. Real case studies are used to demonstrate and validate the benefits of the proposed approach. By using this method, an evaluation of actual project performance can be developed that appropriately considers the natural variability of construction costs.

Research on Digital Construction Site Management Using Drone and Vision Processing Technology (드론 및 비전 프로세싱 기술을 활용한 디지털 건설현장 관리에 대한 연구)

  • Seo, Min Jo;Park, Kyung Kyu;Lee, Seung Been;Kim, Si Uk;Choi, Won Jun;Kim, Chee Kyeung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.239-240
    • /
    • 2023
  • Construction site management involves overseeing tasks from the construction phase to the maintenance stage, and digitalization of construction sites is necessary for digital construction site management. In this study, we aim to conduct research on object recognition at construction sites using drones. Images of construction sites captured by drones are reconstructed into BIM (Building Information Modeling) models, and objects are recognized after partially rendering the models using artificial intelligence. For the photorealistic rendering of the BIM models, both traditional filtering techniques and the generative adversarial network (GAN) model were used, while the YOLO (You Only Look Once) model was employed for object recognition. This study is expected to provide insights into the research direction of digital construction site management and help assess the potential and future value of introducing artificial intelligence in the construction industry.

  • PDF

The Potential of Building Information Modeling in Application Process of G-SEED

  • Chen, De Jian;Yoon, Heakyung
    • Architectural research
    • /
    • v.20 no.4
    • /
    • pp.121-128
    • /
    • 2018
  • Given the barriers to implement green building rating systems, Building Information Modeling (BIM) was suggested as an effective solution integrating information into one model and saving substantial time to facilitate certification process. Synergies between BIM and Leadership in Energy and Environment Design (LEED), the most widely used rating system, have been researched for a few decades. This paper demonstrates literature review about the development of integration between BIM and LEED. The research focuses on synergies between BIM and Green Standard for Energy & Environmental Design (G-SEED) in Korea, as one of important strategies to mitigate greenhouse gas emission. The research compares LEED and G-SEED related items based on evaluation contents. The result manifests G-SEED and LEED share many common items in different degrees. Therefore, it is entirely possible for G-SEED and BIM to adapt same developing mode of LEED and BIM. Moreover, the study measures the potential of BIM in application process of G-SEED certification by investigation of credits in LEED and G-SEED can be earned by BIM. The results of paper indicate the documentation support LEED and G-SEED may be prepared directly, semi-directly and indirectly via sustainability analyses software in BIM.

Integration of 3D Laser Scanner and BIM Process for Visualization of Building Defective Condition (3D 레이저 스캐닝과 BIM 연동을 통한 건축물 노후 상태 정보 시각화 프로세스)

  • Choi, Moonyoung;Kim, Sangyong;Kim, Seungho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • The regular assessment of a building is important to understand structural safety and latent risk in the early stages of building life cycle. However, methods of traditional assessment are subjective, atypical, labor-intensive, and time-consuming and as such the reliability of these results has been questioned. This study proposed a method to bring accurate results using a 3D laser scanner and integrate them in Building Information Modeling (BIM) to visualize defective condition. The specific process for this study was as follows: (1) semi-automated data acquisition using 3D laser scanner and python script, (2) scan-to-BIM process, (3) integrating and visualizing defective conditions data using dynamo. The method proposed in this study improved efficiency and productivity in a building assessment through omitting the additional process of measurement and documentation. The visualized 3D model allows building facility managers to make more effective decisions. Ultimately, this is expected to improve the efficiency of building maintenance works.

Study on Detailed Air Flows in Urban Areas Using GIS Data in a Vector Format and a CFD Model (벡터 형식의 GIS 자료와 CFD 모델을 이용한 도시 지역 상세 대기 흐름 연구)

  • Kwon, A-Rum;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.755-767
    • /
    • 2014
  • In this study, detailed air flow characteristics in an urban areas were analyzed using GIS data and a Computational Fluid Dynamics (CFD) model. For this, a building construction algorithm optimized for Geographic Information System (GIS) data with a vector format (Los Angeles region imagery acquisition consortium 2 geographic information system, LARIAC2 GIS) was used. In the LARIAC2 GIS data, building vertices were expressed as latitude and longitude. Using the model buildings constructed by the algorithm as the surface boundary data in the CFD model, we performed numerical simulations for two building-congested areas in Los Angeles using inflow information provided by California Air Resources Board. Comparing with the inflow, there was a marked difference in wind speed and direction within the target areas, which was mainly caused by the secondarily induced local circulations such as street-canyon vortices, horse-shoe vortices, and recirculation zones. In street canyons parallel to the inflow direction, wind speed increased due to a channeling effect and, in street canyons perpendicular to the inflow direction, vertically well developed vortices were induced. In front of a building, a horse-shoe vortex was developed near the surface and, behind a building, a recirculation zone was developed. Near the surface in the areas where the secondarily induced local circulations, wind speed remarkably increased. Overall, wind direction little (largely) changed at the areas where wind speed largely increased (decreased).

Development of Biotope area ratio Estimation Model using GIS (GIS를 활용한 생태면적률 산정 모델 개발)

  • Lee, Ji-Soo;Lee, Seung-Wook;Lee, Seung-Yeob;Hong, Won-Hwa
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.9-18
    • /
    • 2011
  • The purpose of this research is to evaluate an accurate biotope area ratio model with efficiency and convenience of database management through promoting sustainable development to provide people amenities in a new town. In particular, the biotope area ratio is used not only in the environment impact assessment but Green building certification criteria. But now there is no any index map of biotope. So it is very hard to implement with data for supplement results. In this research, we suggest the model of integrated attributable information. The evaluation of biotope area ratio is to include a basic land use planning map and a building coverage area which is a wall of greening surface and roof. In case of non building coverage area, the evaluation of biotope area ratio is to include water space, artificial ground, natural ground and pervious gap-pave. A weighted value on the spatial information is combined into the information. And then the merged one is given a land use planning information in a block. In the weighted value on the space type information, it is possible to in its circumstances. Therefore, it can be substituted a correspondence of numerical change for various values elastically in this model.

Analysis of Typhoon Vulnerability According to Quantitative Loss Data of Typhoon Maemi (태풍 매미의 피해 데이터 기반 국내 태풍 취약성 분석에 관한 연구)

  • Ahn, Sung-Jin;Kim, Tae-Hui;Kim, Ji-Myong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.125-126
    • /
    • 2019
  • This study aims to recognize damage indicators of typhoon and to develop damage function's indicators, using information derived from the actual loss of typhoon Maemi. As typhoons engender significant financial damage all over the world, governments and insurance companies, local or global, develop hurricane risk assessment models and use it in quantifying, avoiding, mitigating, or transferring the risks. For the reason, it is crucial to understand the importance of the risk assessment model for typhoons, and the importance of reflecting local vulnerabilities for more advanced evaluation. Although much previous research on the economic losses associated with natural disasters has identified the risk indicators that are indispensable, more comprehensive research addressing the relationship between vulnerability and economic loss are still called for. Hence this study utilizes and analyzes the actual loss record of the typhoon Maemi provided by insurance companies to fill such gaps. In this study, natural disaster indicators and basic building information indicators are used in order to generate the vulnerability functions; and the results and indicators suggest a practical approach to create the vulnerability functions for insurance companies and administrative tasks, while reflecting the financial loss and local vulnerability of the actual buildings.

  • PDF