DOI QR코드

DOI QR Code

Study on Detailed Air Flows in Urban Areas Using GIS Data in a Vector Format and a CFD Model

벡터 형식의 GIS 자료와 CFD 모델을 이용한 도시 지역 상세 대기 흐름 연구

  • Kwon, A-Rum (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Jae-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 권아름 (부경대학교 환경대기과학과) ;
  • 김재진 (부경대학교 환경대기과학과)
  • Received : 2014.12.09
  • Accepted : 2014.12.19
  • Published : 2014.12.31

Abstract

In this study, detailed air flow characteristics in an urban areas were analyzed using GIS data and a Computational Fluid Dynamics (CFD) model. For this, a building construction algorithm optimized for Geographic Information System (GIS) data with a vector format (Los Angeles region imagery acquisition consortium 2 geographic information system, LARIAC2 GIS) was used. In the LARIAC2 GIS data, building vertices were expressed as latitude and longitude. Using the model buildings constructed by the algorithm as the surface boundary data in the CFD model, we performed numerical simulations for two building-congested areas in Los Angeles using inflow information provided by California Air Resources Board. Comparing with the inflow, there was a marked difference in wind speed and direction within the target areas, which was mainly caused by the secondarily induced local circulations such as street-canyon vortices, horse-shoe vortices, and recirculation zones. In street canyons parallel to the inflow direction, wind speed increased due to a channeling effect and, in street canyons perpendicular to the inflow direction, vertically well developed vortices were induced. In front of a building, a horse-shoe vortex was developed near the surface and, behind a building, a recirculation zone was developed. Near the surface in the areas where the secondarily induced local circulations, wind speed remarkably increased. Overall, wind direction little (largely) changed at the areas where wind speed largely increased (decreased).

본 연구에서는 LARIAC2 GIS 자료와 전산 유체 역학(CFD) 모델을 이용하여 미국 캘리포니아 주 Los Angeles의 두 지역(Wilshire blvd. & Carondelet and Broadway & $7^{th}$ St.)을 대상으로 수치 실험을 수행하였다. 두 지역의 상세 도시 대기 흐름의 특성을 조사하기 위해 건물 자료 구축 알고리즘을 통해 벡터 형식으로 제공되는 LARIAC2 GIS 자료로부터 건물 도메인 자료를 추출하였다. 추출한 자료를 CFD 모델 입력 자료로 사용하여, 각 지역의 오전과 오후의 주 풍향과 풍속에 대해 수치 실험을 수행하였다. 도시 지역 내에서는 건물에 의해 국소적인 2차 흐름이 발생하면서 유입류와 비교하였을 때, 풍향과 풍속의 차이가 두드러졌다. 유입류와 평행한 방향으로 형성된 도시 협곡에서는 채널링 효과가 나타나면서 풍속이 국지적으로 증가하였고, 수직인 방향으로 형성된 도시 협곡에서는 연직 방향으로 잘 발달한 소용돌이가 형성되었다. 도시 협곡을 이루지 않은 건물의 풍상측에서는 말편자 소용돌이가 지면 근처에서 형성되었고, 풍하측에서는 재순환 영역이 형성되었다. 이와 같은 2차 순환(도시 협곡 소용돌이, 말편자 소용돌이, 재순환 영역)이 형성된 구역에서는 지면 근처의 풍속이 크게 증가하였다. 평균 풍속과 풍향 변화율을 조사한 결과, 대체적으로 풍속 증가율이 높은 곳에서 풍향 변화율이 비교적 낮았고 풍속 감소율이 높은 곳에서는 풍향 변화율이 높게 나타났다.

Keywords

References

  1. Addepalli, B., and E.R. Pardyjak, 2013. Investigation of the flow structure in step-up street canyons-mean flow and turbulence statistics, Boundary-layer meteorology, 148(1): 133-155. https://doi.org/10.1007/s10546-013-9810-5
  2. Arnfield, A.J., 2003. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island, International Journal of Climatology, 23(1): 1-26. https://doi.org/10.1002/joc.859
  3. Baik, J.J., R.S. Park, H.Y. Chun, and J.J. Kim, 2000. A laboratory model of urban street-canyon flows, Journal of Applied Meteorology, 39(9): 1592-1600. https://doi.org/10.1175/1520-0450(2000)039<1592:ALMOUS>2.0.CO;2
  4. Baik, J.J., S.B. Park, and J.J. Kim., 2009. Urban Flow and Dispersion Simulation Using a CFD Model Coupled to a Mesoscale Model, Journal of Applied Meteorology and Climatology, 48(8): 1667-1681. https://doi.org/10.1175/2009JAMC2066.1
  5. Blocken, B., W.D. Janssen, and T. van Hooff., 2011. CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus, Environmental Modelling & Software, 30: 15-34.
  6. Castro, I.P. and D.D. Apsley, 1997. Flow and dispersion over topography: a comparison between numerical and laboratory data for two-dimensional flow, Atmospheric Environment, 31(6): 893-850. https://doi.org/10.1016/S1352-2310(96)00248-8
  7. Chu, A.K.M., R.C.W. Kwok, and K.N. Yu, 2005. Study of pollution dispersion in urban areas using Computational Fluid Dynamics (CFD) and Geographic Information System (GIS), Environmental Modelling & Software, 20(3): 273-277. https://doi.org/10.1016/j.envsoft.2004.05.007
  8. Di Sabatino, S., R. Buccolieri, B. Pulvirenti and R.E. Bbritter, 2008. Flow and pollutant dispersion in street canyons using FLUENT and ADMSUrban, Environmental Modeling & Assessment, 13(3): 369-381. https://doi.org/10.1007/s10666-007-9106-6
  9. Hamlyn, D. and R. Britter, 2005. A numerical study of the flow field and exchange processes within a canopy of urban-type roughness, Atmospheric Environment, 39(18): 3243-3254. https://doi.org/10.1016/j.atmosenv.2005.02.020
  10. Hanna, S.R., M.J. Brown, F.E. Camelli, S.T. Chan, W.J. Coirier, O.R. Hansen, A.H. Huber, S.R. Kim, and R.M. Reynolds, 2006. Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: An Application of Five Computational Fluid Dynamics Models, Bulletin of the American Meteorological Society, 87(12): 1713-1726. https://doi.org/10.1175/BAMS-87-12-1713
  11. Kim, J.J., E. Pardyjak, D.Y. Kim, K.S. Han, and B.H. Kwon, 2014. Effects of Building-Roof Cooling on Flow and Air Temperature in Urban Street canyons, Asia-Pacific Journal of Atmospheric Sciences, 50(3):365-375. https://doi.org/10.1007/s13143-014-0023-8
  12. Kim, M.J., R.J. Park, and J.J. Kim, 2012. Urban air quality modeling with full $O_3-NO_x$-VOC chemistry: Implications for $O_3$ and PM air quality in a street canyon, Atmospheric Environment, 47: 330-340. https://doi.org/10.1016/j.atmosenv.2011.10.059
  13. Kwak, K.H. and J.J. Baik, 2011. A CFD modeling study of the impacts of $NO_x$ and VOC emissions on reactive pollutant dispersion in and above a street canyon, Atmospheric Environment, 46: 71-80.
  14. Kwon, A.R. and J.J. Kim, 2014. Improvement of Building-Construction Algorithm for Using GIS data and Analysis of Flow and Dispersion around Buildings, Korean Journal of Remote Sensing, Accepted (in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.6.4
  15. Lee, J.H., J.W. Choi, J.J. Kim, and Y.S. Suh, 2009. The effect of an urban renewal plan on detailed air flow in an urban area, Journal of Korean Association of Geographic Information Studies, 12(2): 69-81 (in Korean with English abstract).
  16. Lee. Y.S. and J.J. Kim, 2011. Effects of an Apartment Complex on Flow and Dispersion in an Urban Area, Atmosphere, 21(1): 95-108 (in Korean with English abstract). https://doi.org/10.14191/ATMOS.2011.21.1.095
  17. Li, X.X., C.H. Liu, and D.Y.C. Leung, 2009. Numerical investigation of pollutant transport characteristics inside deep urban street canyons, Atmospheric Environment, 43(15): 2410-2418. https://doi.org/10.1016/j.atmosenv.2009.02.022
  18. Park, S.J., D.Y. Kim, and J.J. Kim, 2013. Effects of Atmospheric Stability and Surface Temperature on Microscale Local Airflow in a Hydrological Suburban Area, Atmosphere, 23(1): 13-21 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2013.23.1.013
  19. Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, pp. 197.
  20. Pontiggia, M., G. Landucci, V. Busini, M. Derudi, M. Alba, M. Scaioni, S. Bonvicini, V. Cozzani, and R. Rota, 2011. CFD model simulation of LPG dispersion in urban areas, Atmospheric Environment, 45(24): 3913-3923. https://doi.org/10.1016/j.atmosenv.2011.04.071
  21. Rakowska, A., K.C. Wong, T. Townsend, K.L. Chan, D. Westerdahl, S. Ng, G. Mocnik, L. Drinovec, and Z. Nin, 2014. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon, Atmospheric Environment, 98: 260-270. https://doi.org/10.1016/j.atmosenv.2014.08.073
  22. Rizwan, A.M., L.Y. Dennis, and C. Liu, 2007. A review on the generation, determination and mitigation of Urban Heat Island, Journal of Environmental Sciences, 20(1): 120-128. https://doi.org/10.3321/j.issn:1001-0742.2008.01.019
  23. Roth, M., 2007. Review of urban climate research in (sub) tropical regions. International Journal of Climatology, 27(14): 1859-1873. https://doi.org/10.1002/joc.1591
  24. Tominaga, Y. and T. Stathopoulos, 2013. CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques, Atmospheric Environment, 79: 716-730. https://doi.org/10.1016/j.atmosenv.2013.07.028
  25. Tran, H., D. Uchihama, S. Ochi, and Y. Yasuoka, 2006. Assessment with satellite data of the urban heat island effects in Asian mega cities, International Journal of Applied Earth Observation and Geoinformation, 8(1): 34-48. https://doi.org/10.1016/j.jag.2005.05.003
  26. Vardoulakis, S., M. Valiantis, J. Milner, and H. ApSimon, 2007. Operational air pollution modelling in the UK-Street canyon applications and challenges, Atmospheric Environment, 41(22): 4622-4637. https://doi.org/10.1016/j.atmosenv.2007.03.039
  27. Versteeg, H.K. and W. Malalasekera, 1995. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Longman, Malaysia, pp.257.
  28. Xie, X., Z. Huang, and J.S. Wang, 2005. Impact of building configuration on air quality in street canyon, Atmospheric Environment, 39(25): 4519-4530. https://doi.org/10.1016/j.atmosenv.2005.03.043
  29. Yakhot, V., S.A. Orszag, S. Thangam, T.B. Gatski, and C.G. Speziale, 1992. Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids, 4(7): 1510-1520. https://doi.org/10.1063/1.858424

Cited by

  1. Analysis on the Observation Environment of Surface Wind Using GIS data vol.31, pp.2, 2015, https://doi.org/10.7780/kjrs.2015.31.2.2
  2. Effects of Differential Heating by Land-Use types on flow and air temperature in an urban area vol.32, pp.6, 2016, https://doi.org/10.7780/kjrs.2016.32.6.5