• Title/Summary/Keyword: building energy demand

Search Result 345, Processing Time 0.027 seconds

A Basic Study for Wind Energy of Building Cladding using Computational Fluid Dynamics (CFD를 이용하여 건물 외피의 바람에너지에 관한 적용연구)

  • Chung, Yung-Bea
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • The new and renewable energy today has a great interest in all countries around the world. In special it has need more limit of the fossil fuel that needs of low carbon emission among the social necessary conditions. Recently, the high-rise building demand the structural safety, the economic feasibility and the functional design. The high-rise building spends enormous energy and it satisfied the design in solving energy requirements. The requirements of energy for the building depends on the partly form wind energy due to the cladding of the building that came from the surroundings of the high-rise building. In this study of the wind energy, the cladding of the building was assessed a tentative study. The wind energy obtains from several small wind powers that came from the building or the surrounding of the building. In making a cladding the wind energy forms with wind pressure by means of energy transformation methods. The assessment for the building cladding was surrounded of wind speed and wind pressure that was carried out as a result of numerical simulation of wind environment and wind pressure which is coefficient around the high-rise building with the computational fluid dynamics. In case of the obtained wind energy from the pressure of the building cladding was estimated by the simulation of CFD of the building. The wind energy at this case was calculated by energy transform methods: the wind pressure coefficients were obtained from the simulated model for wind environment using CFD as follow. The concept for the factor of $E_f$ was suggested in this study. $$C_p=\frac{P_{surface}}{0.5{\rho}V^{2ref}}$$ $$E_c=C_p{\cdot}E_f$$ Where $C_p$ is wind pressure coefficient from CFD, $E_f$ means energy transformation parameter from the principle of the conservation of energy and $E_c$ means energy from the building cladding. The other wind energy that is $E_p$ was assessed by wind power on the building or building surroundings. In this case the small wind power system was carried out for wind energy on the place with the building and it was simulated by computational fluid dynamics. Therefore the total wind energy in the building was calculated as the follows. $$E=E_c+E_p$$ The energy transformation, which is $E_f$ will need more research and estimation for various wind situation of the building. It is necessary for the assessment to make a comparative study about the wind tunnel test or full scale test.

  • PDF

Evaluation Standard of Cost-Effectiveness Analysis for Renew of Architectural Equipment in Public Building (공공건물 건축설비 갱신 계획시 비용-효율분석 평가기준에 관한 연구)

  • Jung, Soon-Sung
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.131-138
    • /
    • 2013
  • The purpose of this study is to suggest the evaluation standard of cost-effectiveness analysis for renew of architectural equipment in public building. Evaluation items of cost-effectiveness analysis for renew of architectural equipment in public building were used life cycle cost, energy consumption(ton of oil equivalent), green house gas emissions(ton of carbon dioxide) and maximum power demand. Life cycle cost is the process of making an economic assessment of an item, area, system, or facility by considering all significant costs of ownership over an economic life, expressed in terms of equivalent costs. The essence of life cycle costing is the analysis of equivalent costs of various alternative proposals. The social concern with green house gas and maximum power demand of architectural equipment field has been growing for the last several years.

A Study on Energy Saving Performance by Night Purge Cooling with Pressurized Under Floor Air Distribution System (가압식 바닥공조 시스템과 야간 외기냉방의 병용에 따른 에너지저감 성능에 관한 연구)

  • Yoon, Seong-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • It has been reported about the energy saving performance of UFAD(under floor air distribution) system and NPC(night purge cooling) system respectively which are applied for commercial buildings. However, when two systems are used at the same time, the effect of heat transfer from floor plenum to slab may vary depending on the operating conditions of NPC. In this study, cooling energy demands were analyzed for building models with UFAD and NPC by using TRNSYS 17 program. UFAD was applied as a cooling system of the base building model, and the cooling energy demands were compared for 64 cases in which the operating time, supply airflow rate, and outdoor air temperature(To) of NPC. As a result, it was confirmed that the cooling energy demands were reduced to 30 ~ 80% level compared to UFAD alone, and in particular, the energy demand was reduced in proportion to the supply airflow rate or the operating time while To was 16 ~ 20℃. However, when To was 22℃, the increase in the supply airflow rate or the operating time results in a disadvantage in terms of cooling energy demands. In addition, the cooling energy demands for UFAD+NPC model were analyzed by applying weather data from three regions with different average outdoor air temperatures. As a result, the cooling energy demand of operating NPC only when To was below 20℃ was reduced by 27% compared to that of operating NPC continuously for 8 hours.

Development of Initial Design Stage Guidelines for nearly Zero Energy Offices : A Central-Climate Zone of Korea Case Study

  • Kang, Hae Jin;Yi, Won
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.67-74
    • /
    • 2015
  • This study aimed to develop a design manual to be used during the initial stage of the nearly Zero Energy Building (nZEB) design process. Recently, with the increased demand for nZEBs, there are many architects and architectural firms who are becoming interested in nZEB design. However, since the nZEB design process requires a different approach to the conventional building design process, architects have difficulties with application of the nZEB design process in their projects. Therefore, a design manual which can be used in the nZEB design process was developed in this study. Based on an intensive literature review, energy-saving strategies and their performance levels, which affect heating and cooling energy consumptions were established for a reference building. To analyze the sensitivity of each energy strategy to the overall performance, computer simulations using EnergyPlus were performed. At the same time, an Analysis of Variance assessment was conducted to estimate the relative importance of each energy factor. The energy sensitivity and priority of the energy factors was developed into a set of design guidelines.

A study on economic evaluation when renewable energy system is introduced in public buildings inside of Daegu Sin-seo innovation city (대구신서혁신도시 내 공공건축물의 신재생에너지 시스템 도입시 경제성 평가에 관한 연구)

  • Kim, Bo-Ra;Kim, Ju-Young;Hong, Won-Hwa
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.175-180
    • /
    • 2009
  • According to an increasing demand of political support and development on renewable energy as a solution for the energy problem in Korea, the government has established a goal to raise renewable energy supply from 2.27% to 5% until 2011. Especially in the case of public building in which energy use is in great demand, it would bring a great advantage to develop and utilize the Photovoltaic System as an electric energy and Geothermal Heat Pump System as a thermal energy. On the occasion of Photovoltaic System, Photovoltaic module can be used as an architectural material so that it can reduce construction cost and when we use solar energy, it is possible to make building's own power supply. As for Geothermal Heat Pump System, It can be used infinitely as long as the solar energy exist and operation cost is cheap and yearly efficiency is stable. However, we need to make a plan to reduce early investment expanses for these two renewable energy systems and to expand a diffusion rate as we develop a competitive domestic technology level. So in this study, we are going to perform evaluation of economical efficiency according to the introduction of Photovoltaic System and Geothermal Heat Pump System in public buildings which will be built up inside of Daegu Sin-seo innovation city. As a first step, we will investigate present installation condition of these two renewable energy systems and based upon that, will seek efficient introduction program of renewal energy systems that can be applied in public buildings.

  • PDF

Analysis of GHG Reduction Scenarios on Building using the LEAP Model - Seoul Main Customs Building Demonstration Project - (LEAP 모형을 이용한 건축물의 온실가스 감축 시나리오 분석 - 서울세관건물 그린리모델링 시범사업을 중심으로 -)

  • Yoon, Young Joong;Kim, Min Wook;Han, Jun;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.341-349
    • /
    • 2016
  • This study is intended to set a greenhouse gas emission scenario based on green remodeling pilot project (Annex building of Seoul Customs Office) using LEAP model, a long-term energy plan analysis model, to calculate the energy saving and greenhouse gas emission till year 2035 as well as to analyze the effect of electric power saving cost. Total 4 scenarios were made, Baseline scenario, assuming the past trend is to be maintained in the future, green remodeling scenario, reflecting actual green remodeling project of Seoul Customs Office, behavior improvement and renewable energy supply, and Total scenario. According to the analysis result, the energy demand in 2035 of Baseline scenario was 6.1% decreased from base year 2013, that of green remodeling scenario was 17.5%, that of behavior improvement and renewable energy supply scenario was 21.1% and that of total scenario was 27.3%. The greenhouse emission of base year 2013 was $878.2tCO_2eq$, and it was expected $826.3tCO_2eq$, approx. 5.9% reduced, in 2035 by Baseline scenario. the cumulative greenhouse gas emission saving of the analyzing period were $-26.5tCO_2eq$ by green remodeling scenario, $2.8k\;tCO_2eq$ by behavior improvement and renewable energy supply scenario, and $2.0k\;tCO_2eq$ by total scenario. In addition the effect of electricity saving cost through energy saving has been estimated, and it was approx. 634 million won by green remodeling scenario and appro. 726 million won by behavior improvement and renewable energy supply scenario. So it is analyzed that of behavior improvement and renewable energy supply scenario would be approx. 12.7% higher than that of green remodeling scenario.

A case study for installing of Energy Metering Systems in an Office Building (사무소 건물의 에너지 미터링 시스템 구축에 관한 사례연구)

  • Han, Hye-Sim;Lee, Na-Eun;Lee, Jin-Sook;Jeong, Hak-Geun;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.51-57
    • /
    • 2013
  • Energy saving starts by knowing how much energy is being consumed. A building factor is easier than any other things in energy saving. Since, especially, it is closely connected with user's space-use-patterns and manager's utility-operation-style. An energy metering system lets building users know about energy consumption pattern in buildings and measure energy in real time. Development and materialization of metering systems need more careful plans, so that they depend on a demand of individual facilities and available infrastructures they used to use. But, so far, there is no guidelines how to install metering systems. This paper suggested how to install meters and researched a method for how to analyze by using metered data. For that, Green Building in KIER is used as a test bed. As the results, nevertheless the smallest number of meters is basically one for the whole building energy measuring, it is too limited in analysis. So we needed to add the sort of fuel and utility types and found that it depends on all cases. For this reasons, a guideline should be created in order to install meters as soon as possible. It would be suggest a way to save more energy in building factor.

An Evaluation on IR Sensor Based Demand Controlled Ventilation Strategies for Multi-zone in the Apartment House (IR(Infrared) 센서기반 제어방법에 따른 공동주택 멀티 존 환기시스템 평가 연구)

  • Hong, Sung-Min;Yoon, Dong-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.174-182
    • /
    • 2012
  • In previous research, most occupant said that they have not operated ventilation system installed in the house, because of increasing of energy consumption and unconcern of ventilation. Therefore, it is necessary to applied the sensor based demand controlled ventilation for the IAQ(Indoor Air Quality) and improvement of energy efficiency in ventilation strategy. The propose of this study is to present a application method of IR(Infrared) sensor for multi-zone DCV(Demand Controlled Ventilation) in the apartment house. It is possible that IR sensor could be used for DCV, because that could detect the occupant and action. IR sensor based DCV strategies are established to evaluate characteristic of application in the apartment house and simulated by Contam program. As a result, they have some week points though, if they would be applied DCV with optimum strategy, it would be useful to improve IAQ, to reduce energy consumption.

A Study on the Improvement Plans of Energy Performance in University Building through the Analysis of Energy (에너지 해석을 통한 대학건물의 에너지 성능개선 방안에 관한 연구)

  • Jung, Jae-Woong;Kim, Dong-Woo;Seok, Ho-Tae;Yang, Jeong-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.50-60
    • /
    • 2010
  • Today, the amount of energy consumption in the university campuses is huge. The effort for the energy consumption reduction in university campuses is certainly needed by the following reason; first, contribution to the greenhouse gas discharge reduction demand. Second, energy cost reduction in university campus. Third, contribution to the improvement of the social awareness as the maximum higher educational institutions. The energy consumption analysis of current situation has to be executed for the energy consumption reduction in university campus. The energy reduction possibility in which it exists in university campuses can be understood through the energy consumption analysis. And the application is possible as fundamental data of the policy establishment for the effective energy reduction in university campuses. Especially, the best way to reduce the energy consumption in university campuses that is the energy consumption reduction of buildings. Accordingly, this study derived the plans for improving the performance of energy in the university building by analyzing case study, so this study analyzed the performance of energy for the university building through VE, a program for the analysis of building energy. Based on this result, this study classified the plans improving the efficiency of energy in university building into the plan for passive control and active control respectively, and suggested some concrete plans, and finally evaluated the performance of decreasing energy consumption for each plan.

A Study on Comparison between Korea Green Building Rating System and LEED 2009 in Office Building (국내 친환경건축물 인증제도와 LEED의 평가항목 비교 연구-업무시설을 중심으로)

  • Lee, Hyun-Woo;Choi, Chang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.78-86
    • /
    • 2011
  • Recently due to the crisis of environment and resources, construction industry that effects a lot on nature than any other industries is essentially required to consider environment element through the life cycle. With the increase in the demand for sustainable and environmentally-friendly development, Green Building Certification System came into force in 2002. Lots of advanced countries and Korea have been running green building certification system. But many people of Korea is getting interested in LEED. We spend too much money to get a LEED Certification. So we need to develop our own green building certification that fits our environment. In this study, we are going to compare GBCC with LEED to develop our Green Building Rating System.