• 제목/요약/키워드: brittle failure mechanism

Search Result 69, Processing Time 0.021 seconds

Reliability Estimation of Door Hinge for Rome Appliances (가전제품용 경첩의 신뢰성 추정)

  • Kim Jin Woo;Shin Jae Chul;Kim Myung Soo;Moon Ji Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.689-697
    • /
    • 2005
  • This paper presents the reliability estimation of door hinge for home appliances, which consists of bushing and shaft. The predominant failure mechanism of bushing made of polyoxymethylene(POM) is brittle fracture due to decrease of strength caused by voids existing, and that of shaft made of acrylonitrile-butadiene-styrene(ABS) is creep due to plastic deformation caused by excessive temperature and lowering of glass transition temperature by absorbed moisture. Since the brittle fracture of bushing is overstress failure mechanism, the load-strength interference model is used to estimate the failure rate of it along with failure analysis. By the way, the creep of shaft is wearout failure mechanism, and an accelerated life test is then planned and implemented to estimate its lifetime. Through the technical review about failure mechanism, temperature and humidity are selected as accelerating variables. Assuming Weibull lifetime distribution and Eyring model, the life-stress relationship and acceleration factor, $B_{10}$ life and its lower bound with $90\%$ confidence at worst case use condition are estimated by analyzing the accelerated life test data.

Reliability Estimation of Door Hinge for Home Appliances (가전제품용 경첩의 신뢰성 추정)

  • 문지섭;김진우;이재국;이희진;신재철;김명수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.303-311
    • /
    • 2004
  • This paper presents the reliability estimation of door hinge for home appliances, which consists of bushing and shaft. The predominant failure mechanism of bushing made of polyoxymethylene(POM) is brittle fracture due to decrease of strength caused by voids existing, and that of shaft made of acrylonitrile-butadiene-styrene(ABS) is creep due to plastic deformation caused by excessive temperature and lowering of glass transition temperature by absorbed moisture. Since the brittle fracture of bushing is overstress failure mechanism, the load-strength interference model is used to estimate the failure rate of it along with failure analysis. By the way, the creep of shaft is wearout failure mechanism, and an accelerated life test is then planned and implemented to estimate its lifetime. Through the technical review about failure mechanism, temperature and humidity are selected as accelerating variables. Assuming Weibull lifetime distribution and Eyring model, the life-stress relationship and acceleration factor, B$_{10}$ life and its lower bound with 90% confidence at worst case use condition are estimated by analyzing the accelerated life test data.a.

  • PDF

The investigation of rock cutting simulation based on discrete element method

  • Zhu, Xiaohua;Liu, Weiji;Lv, Yanxin
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.977-995
    • /
    • 2017
  • It is well accepted that rock failure mechanism influence the cutting efficiency and determination of optimum cutting parameters. In this paper, an attempt was made to research the factors that affect the failure mechanism based on discrete element method (DEM). The influences of cutting depth, hydrostatic pressure, cutting velocity, back rake angle and joint set on failure mechanism in rock-cutting are researched by PFC2D. The results show that: the ductile failure occurs at shallow cutting depths, the brittle failure occurs as the depth of cut increases beyond a threshold value. The mean cutting forces have a linear related to the cutting depth if the cutting action is dominated by the ductile mode, however, the mean cutting forces are deviate from the linear relationship while the cutting action is dominated by the brittle mode. The failure mechanism changes from brittle mode with larger chips under atmospheric conditions, to ductile mode with crushed chips under hydrostatic conditions. As the cutting velocity increases, a grow number of micro-cracks are initiated around the cutter and the volume of the chipped fragmentation is decreasing correspondingly. The crack initiates and propagates parallel to the free surface with a smaller rake angle, but with the rake angle increases, the direction of crack initiation and propagation is changed to towards the intact rock. The existence of joint set have significant influence on crack initiation and propagation, it makes the crack prone to propagate along the joint.

Failure Criterion Including Brittle Damage (취성재의 결함을 고려한 파괴기준에 대한 연구)

  • Yoh, Eun-Gu;Lee, Yong-Shin
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.507-510
    • /
    • 2001
  • Brittle failure mechanism has been well known as growth of initial micro-damage, that causes macro crack and failure in the end. Several precise criteria are suggested recently, based on experiments values in a whole load range. Among them, Mohr-Coulomb's criterion is used widely these days, but it has a big error compared with the real failure behavior since it does not show reciprocal actions of stresses. In this study, a new brittle failure criterion is proposed, which includes the effects of brittle damage evolution by taking a brittle damage parameter specifically. Comparisons between the proposed model and the previous ones are also given.

  • PDF

Characterization of the brittleness of hard rock at different temperatures using uniaxial compression tests

  • Chen, Guoqing;Li, Tianbin;Wang, Wei;Guo, Fan;Yin, Hongyu
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.63-77
    • /
    • 2017
  • The failure mechanism of a deep hard rock tunnel under high geostress and high geothermalactivity is extremely complex. Uniaxial compression tests of granite at different temperatures were conducted. The complete stress-strain curves, mechanical parameters and macroscopic failure types of the rock were analyzed in detail. The brittleness index, which represents the possibility of a severe brittleness hazard, is proposed in this paperby comparing the peak stress and the expansion stress. The results show that the temperature range from 20 to $60^{\circ}C$ is able to aggravate the brittle failure of hard rock based on the brittleness index. The closure of internal micro cracks by thermal stress can improve the strength of hard rock and the storage capacity of elastic strain energy. The failure mode ofthe samples changes from shear failure to tensile failure as the temperature increases. In conclusion, the brittle failure mechanism of hard rock under the action of thermal coupling is revealed, and the analysis result offers significant guidance for deep buried tunnels at high temperatures and under high geostress.

An Experimental Study on the Hysteretic Capacity Evaluation of the Shear-Strengthened RC Column with Carbon Fiber Sheet (탄소섬유쉬트로 전단보강한 RC 기둥의 이력성능평가에 관한 실험적 연구)

  • 이현호;구은숙
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.750-755
    • /
    • 1999
  • When the RC frame structures subjected to the seismic load, brittle shear failure of vertical members induces brittle collapse of whole structures. Failure mechanism like this is not desirable. So shear strengthening method to avoid this failure mechanism is needed. Recently, strengthening method using continuous fiber sheet is studied and used widely which have high elastic and high strength characteristics. In this study, RC columns which is strengthened by carbon fiber sheet in the form of tape or whole sheet were tested under the cyclic load. The parameter of this test is the amount of strengthening. As the amount of strengthening increase, strength, ductility and energy capacity increase. The failure mode of test results are shear and bond-split failure.

  • PDF

Study of Brittle Failure (취성파괴에 관한 고찰)

  • Cheon, Dae-Sung;Synn, Joong-Ho;Jeon, Seo-Kwon;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.437-450
    • /
    • 2006
  • Failure around an underground opening is a function of in-situ stress magnitudes, intact rock strength and the distribution of fractures in the rock mass. At high in-situ stress, the failure process is affected and eventually dominated by stress-induced fractures preferentially growing parallel to the excavation boundary. This fracturing is often observed in brittle type of failure such as slabbing or spatting. Recent studies dies on the stress-induced damage of rock revealed its importance especially in a highly stressed regime. As the constructions of underground structures at deep depths increased, the cases of the brittle failure also increased and furthermore spalling was occurred in Korea at low depths. To improve the stability of the underground structures at highly stressed regime, the characteristics of brittle failure should be examined, but they have not yet been properly investigated. Therefore in this report the characteristics of brittle failure such as types, failure mechanism and modeling methods etc. were considered in all aspects, based on the previous researches.

Fracture Analysis of Porous Titanium for Dental Implant Fabricated by Space Holder Process (Space holder 공정으로 제조된 치과 임플란트용 타이타늄 다공체의 파손 분석)

  • Lee, Seung-Mi;Jang, Jin-Man;Lee, Won-Sik;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2016
  • Purpose: The purpose of this study is to analyze fracture behavior and failure mechanism of porous titanium for dental implant fabricated by space holder process. Method: Three porous titanium specimens with a specific volume fraction of open pore were test by 3 point bending and compression stress condition, respectively. Fracture appearance was observed by scanning electron microscope and discussed in relation with oxygen content. Results: For compression-tested specimens, two specimen showed brittle failure, while the other one showed normal failure after deformation. High oxygen content was detected in the brittle-fractured specimen. Several micro-cracks initiated at the struts propagated down to the bottom of the specimen resulting in normal failure. Conclusion: Oxygen contamination during the fabrication process can leads brittle premature failure, and hence quality problem of the porous titanium for dental implant.

Characteristics of the Progressive Brittle Failure around Circular Opening by Scaled Model Test and Discrete Element Analysis (축소 모형시험과 개별 요소 해석에 의한 원형 공동 주변의 점진적 취성파괴 특성에 관한 연구)

  • Jeon Seok-Won;Park Eui-Seob;Bae Seong-Ho
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.250-263
    • /
    • 2005
  • Progressive and localized brittle failures around an excavated opening by the overstressed condition can act as a serious obstacle to ensure the stability and the economical efficiency of construction work. In this paper, the characteristics of the brittle failure around an circular opening with stress level was studied by the biaxial compressive test using sealed specimen and by the numerical simulation with $PFC^{2D}$, one of the discrete element codes. The occurring pattern and shape of the brittle failure around a circular opening monitored during the biaxial loading were well coincided with those of the stress induced failures around the excavated openings observed in the brittle rock masses. The crack development stages with stress level were evaluated by the detailed analysis on the acoustic emission event properties. The microcrack development process around a circular opening was successfully visualized by the particle flow analysis. It indicated that the scaled test had a good feasibility in understanding the mechanism of the brittle failure around an opening with a high reliability.

Study on Rate Dependent Fracture Behavior of Structures; Application to Brittle Materials Using Molecular Dynamics (구조물의 속도 의존적 파괴 특성에 대한 연구; 입자동역학을 이용한 취성재료에의 적용)

  • Kim, Kunhwi;Lim, Jihoon;Llim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.529-536
    • /
    • 2008
  • The failure behavior of structures is changed under different loading rates, which might arise from the rate dependency of materials. This phenomenon has been focused in the engineering fields. However, the failure mechanism is not fully understood yet, so that it is hard to be implemented in numerical simulations. In this study, the numerical experiments to a brittle material are simulated by the Molecular Dynamics (MD) for understanding the rate dependent failure behavior. The material specimen with a notch is modeled for the compact tension test simulation. Lennard-Jones potential is used to describe the properties of a brittle material. Several dynamic failure features under 6 different loading rates are achieved from the numerical experiments, where remarkable characteristics such as crack roughness, crack recession/arrest, and crack branching are observed during the crack propagation. These observations are interpreted by the energy inflow-consumption rates. This study will provides insight about the dynamic failure mechanism under different loading rates. In addition, the applicability of the MD to the macroscopic mechanics is estimated by simulating the previous experimental research.