DOI QR코드

DOI QR Code

Characterization of the brittleness of hard rock at different temperatures using uniaxial compression tests

  • Chen, Guoqing (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology) ;
  • Li, Tianbin (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology) ;
  • Wang, Wei (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology) ;
  • Guo, Fan (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology) ;
  • Yin, Hongyu (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology)
  • Received : 2016.03.08
  • Accepted : 2017.02.16
  • Published : 2017.07.25

Abstract

The failure mechanism of a deep hard rock tunnel under high geostress and high geothermalactivity is extremely complex. Uniaxial compression tests of granite at different temperatures were conducted. The complete stress-strain curves, mechanical parameters and macroscopic failure types of the rock were analyzed in detail. The brittleness index, which represents the possibility of a severe brittleness hazard, is proposed in this paperby comparing the peak stress and the expansion stress. The results show that the temperature range from 20 to $60^{\circ}C$ is able to aggravate the brittle failure of hard rock based on the brittleness index. The closure of internal micro cracks by thermal stress can improve the strength of hard rock and the storage capacity of elastic strain energy. The failure mode ofthe samples changes from shear failure to tensile failure as the temperature increases. In conclusion, the brittle failure mechanism of hard rock under the action of thermal coupling is revealed, and the analysis result offers significant guidance for deep buried tunnels at high temperatures and under high geostress.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Alm, O. (1985), "The influence of micro crack density on the elastic and fracture mechanical properties of stropa granite", Phys. Earth Planet. Inter., 30(40), 161-179.
  2. Amarasiri, A.L. and Kodikara, J.K. (2015), "Effect of characteristic lengths of fracture on thermal crack patterns", Int. J. Geomech., 15(4), 04014071. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000417
  3. Brede, M. and Haasen, P. (1988), "The brittle-to-ductile transition in doped silicon as a model substance", Acta Metall., 36(8), 2003-2018. https://doi.org/10.1016/0001-6160(88)90302-1
  4. Cai, M., Kaiser, P.K., Tasaka, Y., Maejima, T., Morioka, H. and Minami, M. (2004), "Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations", Int. J. Rock Mech. Min. Sci., 41(5), 833-847. https://doi.org/10.1016/j.ijrmms.2004.02.001
  5. Chen, Y.L., Ni, J., Shao, W. and Azzam, R. (2012), "An experimental study on the influence of temperature on the mechanical proper-ties of granite under a uniaxial compression and fatigue loading", Int. J. Rock Mech. Min. Sci., 56(12), 62-66.
  6. Chen, G.Q., Li, T.B., Gao, M.B., Chen, Z.Q. and Xiang, T.B. (2013), "Deformation warning and dynamic control of dangerous disaster for Large Underground Caverns", Disaster Adv., 6(s1), 422-430.
  7. Chen, G., Li, T., Zhang, G., Yin, H. and Zhang, H. (2014), "Temperature effect of rock burst for hard rock in deep-buried tunnel", Nat. Haz., 72(2), 915-926. https://doi.org/10.1007/s11069-014-1042-6
  8. David, C., Menéndez, B. and Darot, M. (1999), "Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite", Int. J. Rock Mech. Min. Sci., 36(4), 433-448. https://doi.org/10.1016/S0148-9062(99)00010-8
  9. Diederichs, M.S., Kaiser, P.K. and Eberhardt, E. (2004), "Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation", Int. J. Rock Mech. Min. Sci., 41(5), 785-812. https://doi.org/10.1016/j.ijrmms.2004.02.003
  10. Eberhardt, E., Stead, D., Stimpson, B. and Read, R.S. (1998), "Identifying crack initiation and propagation thresholds in brittle rock", Can. Geotech. J., 35(2), 222-233. https://doi.org/10.1139/t97-091
  11. Feng, X.T. and Hudson, J.A. (2011), Rock Engineering Design, CRC Press, Boca Raton, CA, USA.
  12. Goy, L., Fabre, D. and Menard, G. (1996), "Modelling of Rock Temperatures for Deep Alpine Tunnel Projects", Rock Mech. Rock Eng., 29(1), 1-18. https://doi.org/10.1007/BF01019936
  13. Jiang, Q., Feng, X.T., Xiang, T.B. and Su, G. (2010), "Rockburst characteristics and numerical simulation based on a new energy index: a case study of a tunnel at 2,500 m depth", Bull. Eng. Geol. Environ., 69(3), 381-388. https://doi.org/10.1007/s10064-010-0275-1
  14. Jiang, Q., Feng, X.T., Chen, J., Huang, K. and Jiang, Y. (2013), "Estimating in-situ rock stress from spalling veins: A Case study", Eng. Geol., 152(1), 38-47. https://doi.org/10.1016/j.enggeo.2012.10.010
  15. Jiao, Y.Y., Zhang, X.L., Zhang, H.Q., Li, H., Yang, S. and Li, J. (2015), "A coupled thermo-mechanical discontinuum model for simulating rock cracking induced by temperature stresses", Comput. Geotechnics, 67, 142-149. https://doi.org/10.1016/j.compgeo.2015.03.009
  16. Koyama, T., Chijimatsu, M., Shimizu, H., Nakama, S., Fujita, T., Kobayashi, A. and Ohnishi, Y. (2013), "Numerical modeling for the coupled thermo-mechanical processes and spalling phenomena in Aspo Pillar stability experiment (APSE)", J. Rock Mech. Geotechn. Eng., 5(1), 58-72. https://doi.org/10.1016/j.jrmge.2013.01.001
  17. Li, S.J., Feng, X.T., Li, Z.H., Chen, B., Zhang, C. and Zhou, H. (2012), "In situ monitoring of rockburst nucleation and evolution in the deeply buried tunnels of Jinping II hydropower station", Eng. Geol., 137-138(6), 85-96. https://doi.org/10.1016/j.enggeo.2012.03.010
  18. Liu, S. and Xu, J.Y. (2015), "An experimental study on the physico-mechanical properties of two post-hightemperature rocks", Eng. Geol., 185, 63-70. https://doi.org/10.1016/j.enggeo.2014.11.013
  19. Liu, J.P., Li, Y.H. and Xu, S.D. (2014), "Estimation of cracking and damage mechanisms of rock specimens with precut holes by moment tensor analysis of acoustic emission", Int. J. Fract., 188(1), 1-8. https://doi.org/10.1007/s10704-014-9940-x
  20. Martin, C.D. (1993), "The Strength of Massive Lac du Bonnet Granite around Underground Opening", Ph.D. Dissertation; University of Manitoba, Manitoba Canada.
  21. Meng, F.Z., Zhou, H., Zhang, C.Q., Xu, R. and Lu, J. (2015), "Evaluation methodology of brittleness of rock based on post-peak stress-strain curves", Rock Mech. Rock Eng., 48(5), 1787-1805. https://doi.org/10.1007/s00603-014-0694-6
  22. Nicksiar, M. and Martin, C.D. (2012), "Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks", Rock Mech. Rock Eng., 45(4), 607-617. https://doi.org/10.1007/s00603-012-0221-6
  23. Pan, P.Z., Feng, X.T., Huang, X.H., Cui, Q. and Zhou, H. (2009), "Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton", Environ. Geol., 57(6), 1299-1311. https://doi.org/10.1007/s00254-008-1463-1
  24. Peng, J., Rong, G., Cai, M. and Zhou, C. (2015), "A model for characterizing crack closure effect of rocks", Eng. Geol., 189, 48-57. https://doi.org/10.1016/j.enggeo.2015.02.004
  25. Ranjith, P.G., Viete, D.R. and Chen, B.J. (2012), "Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure", Eng. Geol., 151(9), 120-127. https://doi.org/10.1016/j.enggeo.2012.09.007
  26. Rybach, L. and Pfister, M. (1994), "How to predict rock temperatures for deep Alpine tunnels", J. Appl. Geophys., 31(1-4), 261-270. https://doi.org/10.1016/0926-9851(94)90061-2
  27. Shen, J.Y., Jimenez, R., Karakus, M. and Xu, C. (2014), "A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength", Rock Mech. Rock Eng., 47(2), 357-369. https://doi.org/10.1007/s00603-013-0408-5
  28. Singh, S.P. (1987), "The influence of rock properties on the occurrence and control of rockbursts", Min. Sci. Technol., 5(1), 11-18. https://doi.org/10.1016/S0167-9031(87)90854-1
  29. Sygala, A., Bukowska, M. and Janoszek, T. (2013), "High temperature versus geomechanical parameters of selected rocks-the present state of research", J. Sustainable Min., 12(4), 45-51. https://doi.org/10.7424/jsm130407
  30. Toula, F. (1917), "Geothermal conditions of the Simplon Mountains in the area of the great tunnel", PetermannsMitteilungen, 63, 161-116.
  31. Wan, Z.J., Zhao, Y.S., Zhang, Y. and Wang, C. (2009), "Research status quo and prospection of mechanical characteristics of rock under high temperature and high pressure", Procedia Earth Planet. Sci., 1(1), 565-570. https://doi.org/10.1016/j.proeps.2009.09.090
  32. Wilhelm, J. and Rybach, L. (2003), "The geothermal potential of Swiss Alpine tunnels", Geothermics, 32(4-6), 557-568. https://doi.org/10.1016/S0375-6505(03)00061-0
  33. Wisetsaen, S., Walsri, C. and Fuenkajorn, K. (2015), "Effects of loading rate and temperature on tensile strength and deformation of rock salt", Int. J. Rock Mech. Min. Sci., 73, 10-14.
  34. Xue, L., Qin, S.Q., Sun, Q., Wang, Y., Lee, L.M. and Li, W. (2014), "A study on crack damage stress thresholds of different rock types based on uniaxial compression tests", Rock Mech. Rock Eng., 47(4), 1183-1195. https://doi.org/10.1007/s00603-013-0479-3
  35. Yavuz, H.S., Demirdag, S.C. and Caran, S. (2010), "Thermal effect on the physical properties of carbonate rocks", Int. J. Rock Mech. Min. Sci., 47(1), 94-103. https://doi.org/10.1016/j.ijrmms.2009.09.014
  36. Zhang, L.Y., Mao, X.B. and Lu, A. (2009), "Experimental study on the mechanical properties of rocks at high temperature", Sci. China Ser. E-Technol. Sci., 52(3), 641-646. https://doi.org/10.1007/s11431-009-0063-y
  37. Zhang, C.Q., Feng, X.T., Zhou, H., Qiu, S. and Wu, W. (2012), "Case histories of four extremely intense rockbursts in deep tunnels", Rock Mech. Rock Eng., 45(3), 275-288. https://doi.org/10.1007/s00603-011-0218-6
  38. Zhang, L.Y., Mao, X.B., Liu, R.X., Guo, X. and Ma, D. (2014), "The mechanical properties of mudstone at high temperatures: An experimental study", Rock Mech. Rock Eng., 47(4), 1479-1484. https://doi.org/10.1007/s00603-013-0435-2
  39. Zhou, H., Hu, D.W., Zhang, F.A. and Shao, J. (2011), "A thermo-plastic/viscoplastic damage model for geomaterials", ActaMec. Solida Sin., 24(3), 195-208. https://doi.org/10.1016/S0894-9166(11)60021-9

Cited by

  1. A Statistical Constitutive Model considering Deterioration for Brittle Rocks under a Coupled Thermal-Mechanical Condition vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/3269423
  2. Microseismic Monitoring of Energy Changes in Deep Tunnels during the TBM Tunneling of the Jinping II Hydropower Station vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/5364628
  3. A plastic strain based statistical damage model for brittle to ductile behaviour of rocks vol.21, pp.4, 2020, https://doi.org/10.12989/gae.2020.21.4.349
  4. A new rock brittleness index on the basis of punch penetration test data vol.21, pp.4, 2020, https://doi.org/10.12989/gae.2020.21.4.391
  5. Material constituents and mechanical properties and macro-micro-failure modes of tight gas reservoirs vol.38, pp.6, 2017, https://doi.org/10.1177/0144598720913069
  6. Thermographic analysis of failure for different rock types under uniaxial loading vol.23, pp.6, 2020, https://doi.org/10.12989/gae.2020.23.6.503
  7. Effect of heat treatment and bedding orientation on the tensile properties of bedded sandstone vol.26, pp.5, 2017, https://doi.org/10.12989/gae.2021.26.5.477