Study of Brittle Failure

취성파괴에 관한 고찰

  • 천대성 (한국지질자원연구원 지반안전연구부) ;
  • 신중호 (한국지질자원연구원 지반안전연구부) ;
  • 전석원 (서울대학교 공과대학 지구환경시스템공학부) ;
  • 박찬 (한국지질자원연구원 지반안전연구부)
  • Published : 2006.12.31

Abstract

Failure around an underground opening is a function of in-situ stress magnitudes, intact rock strength and the distribution of fractures in the rock mass. At high in-situ stress, the failure process is affected and eventually dominated by stress-induced fractures preferentially growing parallel to the excavation boundary. This fracturing is often observed in brittle type of failure such as slabbing or spatting. Recent studies dies on the stress-induced damage of rock revealed its importance especially in a highly stressed regime. As the constructions of underground structures at deep depths increased, the cases of the brittle failure also increased and furthermore spalling was occurred in Korea at low depths. To improve the stability of the underground structures at highly stressed regime, the characteristics of brittle failure should be examined, but they have not yet been properly investigated. Therefore in this report the characteristics of brittle failure such as types, failure mechanism and modeling methods etc. were considered in all aspects, based on the previous researches.

암반구조물의 파괴는 초기응력의 크기, 무결암의 강도 그리고 단층이나 절리와 같이 암반 내에 존재하는 불연속면의 상태에 의해 좌우된다. 일반적으로 고심도에 건설되는 암반구조물의 경우 높은 현지응력과 공동굴착에 따른 유도응력으로 인해 공동 경계면에서 스폴링이나 슬래빙과 같은 취성파괴가 발생할 수 있다. 최근 고심도에 건설되는 암반구조물이 증가함에 따라 취성파괴의 발생사례가 증가하고 있으며, 더욱이 국내의 저심도 구간에서도 스폴링 현상이 보고되어 취성파괴에 대한 연구의 필요성이 요구된다. 그러나 아직까지 취성파괴에 대해 명확하게 규명되지 않아 본 보고에서 취성파괴 현상을 규명하기 위해 수행되었던 기존 연구결과를 중심으로 취성파괴와 그 특징에 대하여 요약 정리하였다.

Keywords

References

  1. 배성호, 2004, 수압파쇄법에 의해 측정된 국내 초기응력의 지체구조구별 분포 특성에 관한 연구, 공학박사학위논문, 서울대학교
  2. 성백욱, 2004, 이축 압축 시험에 의한 원형 공동 주변 암석의 취성파괴 특성, 공학석사학위논문, 서울대학교
  3. 양형식, 장명환, 2002, 암석파괴이론, 전남대학교 출판부, 277p
  4. 이대혁, 이희석, 김호영, 김석진, 박연준, 2004, 과지압 암반내 대규모 지하저장공동 주변 안정성 문제 발생 및 해결사례 고찰, 가을학술세미나논문집, 한국지반공학회 암반역학위원회, pp. 151-172
  5. 윤경진, 2002, 미소파괴음 측정과 결합입자모델 해석에 의한 암석의 변형파괴, 공학석사학위논문, 서울대학교
  6. Aglawe, J.P., 1999, Unstable and violent failure around underground openings in highly stressed ground, Ph.D. Dissertation, Queen's University at Kingdom, Canada
  7. Andersson, J.A., Strom, K., Svemar, C., Almen, K.E., Ericsson, L.E., 2000, What requirements do the KBS-3 repository make on host rocks?, Geoscientific suitability indicators and criteria for siting and site evaluation, Technical Report TR-00- 12, Swedish Nuclear Fuel and Waste Management Company, Sweden
  8. Andreev, G.E., 1995, Brittle failure of rock materials: Test results and constitutive models, A.A. Balkema, The Netherlands, 454p
  9. Bieniawski, Z.T., 1967, Mechanism of brittle fracture of rock, Parts 1, 2 and 3, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 4, pp. 395-430 https://doi.org/10.1016/0148-9062(67)90030-7
  10. Bombolakis, E., 1973, Study of the brittle fracture process under uniaxial compression, Tectonophysics, Vol. 18, pp. 231-248 https://doi.org/10.1016/0040-1951(73)90048-6
  11. Carter, B.J., 1992, Size and stress gradient effects on fracture around cavities, Rock Mechanics and Rock Engineering, Vol. 25, pp.167-186 https://doi.org/10.1007/BF01019710
  12. Cho, N., Martin, C.D., Sego, D.C., Christiansson, R., 2004, Modeling dilation in brittle rocks, Proceedings of ARMS/NARMS, 04-483
  13. Cook, N.G.W., 1995, Muller Lecture: Why rock mechnaics?, Proceeding of the International Congress on Rok Mechanics, Tokyo, pp. 975-994
  14. Diederichs, M.S., 1999, Instability of hard rock masses: The role of tensile damage and relaxation, Ph.D. Dissertation, University of Waterloo, Canada
  15. Ewy, R.T. and Cook, N.G.W., 1990, Deformation and fracture around cylindrical openings in rock: Parts I and II, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 27, pp. 387-427 https://doi.org/10.1016/0148-9062(90)92713-O
  16. Fakhimi, A., Carvalho, F., Ishida, T., Labuz, J.F., 2002, Simulation of failure around a circular opening in rock, International Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp. 507-515 https://doi.org/10.1016/S1365-1609(02)00041-2
  17. Fang, Z. and Harrison, J.P., 2001, A mechanical degradation index for rock, International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp. 1193-1199 https://doi.org/10.1016/S1365-1609(01)00070-3
  18. Fang, Z. and Harrison, J.P., 2002, Develoment of a local degradation approach to the modeling of brittle fracture in heterogeneous rocks, International Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp. 443-457 https://doi.org/10.1016/S1365-1609(02)00035-7
  19. Gramberg, J., 1989, A non-conventional view on rock mechanics and fracture mechanics, Rotterdam, Balkema, 250P
  20. Haimson, B., 2003, Borehole breakouts in crystalline and granular rocks as indicators of in-situ stress, Proceedings of International Symposium on Rock Stress, Kumamoto, pp. 81-87
  21. Haimson, B. and Chang, C., 2000, A new true triaxial cell for testing mechanical properties of rock and its use to determine rock strength and defonnability, International Journal of Rock Mechanics and Mining Sciences, Vol. 37, pp. 285296 https://doi.org/10.1016/S1365-1609(99)00106-9
  22. Haimson, B.C. and Herrick, C.G., 1989, Borehole breakouts and in-situ stress, Proceedings of 12th Annual Energy-Sources Technology Conference and Exhibition, Drilling Symposium, pp. 17-22
  23. Haimson, B. and Song, I., 1993, Laboratory study of borehole breakouts in Cordova Cream sandstone: a case of shear failure mechanism, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 30, pp. 1047-1056 https://doi.org/10.1016/0148-9062(93)90070-T
  24. Hajiabdolmajid, V., 2001, Mobilization of strength in brittle failure of rock, Ph.D Dissertation, Queen's University, Canada
  25. Hajiabdolmajid, V., Kaiser, P.K., Martin, C.D., 2002, Modeling brittle failure of rock, Intemational Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp. 731-741 https://doi.org/10.1016/S1365-1609(02)00051-5
  26. Hajiabdolmajid, V. and Kaiser, P.K., 2003, Brittleness of rock and stability assessment in hard rock tunnelling, Tunnelling and Underground Space Technology, Vol. 18, pp. 35-48 https://doi.org/10.1016/S0886-7798(02)00100-1
  27. Hazzard, J.F., 1998, Numerical modelling of acoustic emissions and dynamic rock behavior, Ph.D. Thesis, Keele University, Keele, England
  28. Hetenyi, M., 1966, Handbook of experimental stress analysis, Wiley, New York
  29. Hoek, E., 1965, Rock fracture under static stress conditions, CSIR Report MEG 383, National Mechanical Research Institute, South Africa
  30. Hoek, E. and Brown E.T., 1997, Practical estimates of rock mass strength, International Journal of Rock Mechanics and Mining Sciences, Vol. 34, pp. 1165-1186 https://doi.org/10.1016/S1365-1609(97)80069-X
  31. Hoek, E., Kaiser, P.K., Bawden, W.F., 1995, Support of underground excavations in hard rock, A.A. Balkema, Rotterdam, 215p
  32. Hucka, V. and Das, B., 1974, Brittleness determination of rocks by different methods, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 11, pp. 389-392 https://doi.org/10.1016/0148-9062(74)91109-7
  33. Kahraman, S. and Altindag, R., 2004, A brittleness index to estimate fracture toughness (Technical Note), International Journal of Rock Mechanics and Mining Sciences, Vol. 41, pp. 343-348 https://doi.org/10.1016/j.ijrmms.2003.07.010
  34. Kaiser, P.K., Diederichs, M.S., Martin, C.D., Sharp, J., Steiner, W., 2000, Underground works in hard rock tunnelling and mining, Proceedings of GeoEng2000, Melbourne, Australia
  35. Konietzky, H., Kamp, L., Blumling, P., Mayor, J.C., 2001, Micro-mechanical analysis of excavation disturbed zones around tunnels, Proceedings of Computer Methods and Advances in Geomechanics, pp. 543-546
  36. Lajtai, E.Z., 1998, Microscopic fracture processes in a granite, Rock Mechancis and Rock Engineering, Vol. 31, pp. 237-250 https://doi.org/10.1007/s006030050023
  37. Lee, M. and Haimson, B., 1993, Laboratory study of borehole breakouts in Lac du Bonnet granite: a case of extensile failure mechanism, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 30, pp. 1039-1045 https://doi.org/10.1016/0148-9062(93)90069-P
  38. Lee, S.M., Park, B.S., Lee, S.W., 2004, Analysis of rockbursts that have occurred in a waterway tunnel in Korea, International Journal of Rock Mechanics and Mining Sciences, Vol. 41, 3B 24
  39. Martin, C.D., 1993, The strength of massive Lac du Bonnet granite around undeground penings, Ph.D. Dissertation, University of Manitoba, Canada
  40. Martin, C.D., 1997, The effect of cohesion loss and stress path on brittle rock strength, Canadian Geotechnical Journal, Vol. 34, pp. 222-233
  41. Martin, C.D., 2001, Rock stability considerations for siting and construction a KBS-3 repository, SKB Technical Report
  42. Martin, C.D. and Chandler, N.A., 1994, The progressive fracture of Lac du Bonnet granite, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 31, pp. 643-659 https://doi.org/10.1016/0148-9062(94)90005-1
  43. Martin, C.D., Read, R.S., Martino, J.B., 1997, Observation of brittle failure around a circular test tunnel, International Journal of Rock Mechanics and Mining Sciences, Vol. 34, pp. 1065-1073 https://doi.org/10.1016/S1365-1609(97)90200-8
  44. Mastin, L., 1984, The development of borehole breakouts in sandstone, MS thesis, Stanford University, Palo Alto, California, USA
  45. Myer, L.R., Kemeny, J.M., Zheng, Z., Suarez, R., Ewy, R.T. and Cook, N.G.W., 1992, Extensile cracking in porous rock under differential compressive stress, Micromechanical modelling of quasi-brittle materials behavior, Applied Mechanics Reviews, Vol.45, pp. 263-280 https://doi.org/10.1115/1.3119758
  46. Mogi, K., 1966, Pressure dependence of rock strength and transition from brittle fracture to ductile flow, Bulletin Earthquake Research Institute Japan, Vol. 44, pp. 215-232
  47. Ortlepp, W.D., 1997, Rock fracture and rockbursts - an illustrative study, Monograph Series, South African Institute of Mining and Metallurgy, Johannesburg
  48. Pelli, F., Kaiser, P.K., Morgenstern, N.R., 1991, An interpretation of ground movements recorded during construction of the donkien-morien tunnel, Canadian Geotechnical Journal, Vol. 28, 239-254 https://doi.org/10.1139/t91-030
  49. Potyondy, D.O. and Cundall, P.A., 1998, Modeling notch-formation mechanisms in the URL mine-by test tunnel using bonded assemblies of circular particles, International Journal of Rock Mechanics and Mining Sciences, Vol. 35, pp. 510-511 https://doi.org/10.1016/S0148-9062(98)00083-7
  50. Read, R.S. and Martin, C.D., 1996, Technical summary of AECL's mine-by experiment phase I: Excavation response, AECL Report AECL11311, Atomic Energy of Canada Limited
  51. Read, R.S., Chandler, N.A., Dzik, E.J., 1998, In-situ strength criteria for tunnel design in highly-stressed rock masses, International Journal of Rock Mechanics and Mining Sciences, Vol. 35, pp. 261-278 https://doi.org/10.1016/S0148-9062(97)00302-1
  52. Stacey, T.R., 1981, A simple extension strain criterion for fracture of brittle rock, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 18, pp. 469-474 https://doi.org/10.1016/0148-9062(81)90511-8
  53. Zheng, Z., 1989, Compressive stress-induced microcracks in rocks and applications to seismic anisotropy and borehole stability, Ph.D. Thesis, University of California, Berkely, USA