• Title/Summary/Keyword: bounded A-linear operator

Search Result 104, Processing Time 0.025 seconds

Counter-examples and dual operator algebras with properties $(A_{m,n})$

  • Jung, Il-Bong;Lee, Hung-Hwan
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.659-667
    • /
    • 1994
  • Let $H$ be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ be the algebra of all bounded linear operators on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $I_H$ and is closed in the ultraweak operator topology on $L(H)$. Note that the ultraweak operator topology coincides with the weak topology on $L(H) (cf. [6]). Several functional analysists have studied the problem of solving systems of simultaneous equations in the predual of a dual algebra (cf. [3]). This theory is applied to the study of invariant subspaces and dilation theory, which are deeply related to the classes $A_{m,n}$ (that will be defined below) (cf. [3]). An abstract geometric criterion for dual algebras with property $(A_{\aleph_0}, {\aleph_0})$ was first given in [1].

  • PDF

POSINORMAL TERRACED MATRICES

  • Rhaly, H. Crawford, Jr.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.117-123
    • /
    • 2009
  • This paper is a study of some properties of a collection of bounded linear operators resulting from terraced matrices M acting through multiplication on ${\ell}^2$; the term terraced matrix refers to a lower triangular infinite matrix with constant row segments. Sufficient conditions are found for M to be posinormal, meaning that $MM^*=M^*PM$ for some positive operator P on ${\ell}^2$; these conditions lead to new sufficient conditions for the hyponormality of M. Sufficient conditions are also found for the adjoint $M^*$ to be posinormal, and it is observed that, unless M is essentially trivial, $M^*$ cannot be hyponormal. A few examples are considered that exhibit special behavior.

THE JUMP OF A SEMI-FREDHOLM OPERATOR

  • Lee, Dong-Hak;Lee, Woo-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.593-598
    • /
    • 1994
  • In this note we give some results on the jump (due to Kato [5] and West [7]) of a semi-Fredholm operator. Throughout this note, suppose X is an Banach space and write L(X) for the set of all bounded linear operators on X. A operator $T \in L(x)$ is called upper semi-Fredholm if it has closed range with finite dimensional null space, and lower semi-Fredholm if it has closed range with its range of finite co-dimension. It T is either upper or lower semi-Fredholm we shall call it semi-Fredholm and Fredholm it is both. The index of a (semi-) Fredholm operator T is given by $$ index(T) = n(T) = d(T),$$ where $n(T) = dim T^{-1}(0)$ and d(T) = codim T(X).

  • PDF

A NOTE ON THE PROPERTIES OF PSEUDO-WEIGHTED BROWDER SPECTRUM

  • Preeti, Dharmarha;Sarita, Kumari
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.123-135
    • /
    • 2023
  • The goal of this article is to introduce the concept of pseudo-weighted Browder spectrum when the underlying Hilbert space is not necessarily separable. To attain this goal, the notion of α-pseudo-Browder operator has been introduced. The properties and the relation of the weighted spectrum, pseudo-weighted spectrum, weighted Browder spectrum, and pseudo-weighted Browder spectrum have been investigated by extending analogous properties of their corresponding essential pseudo-spectrum and essential pseudo-weighted spectrum. The weighted spectrum, pseudo-weighted spectrum, weighted Browder, and pseudo-weighted Browder spectrum of the sum of two bounded linear operators have been characterized in the case when the Hilbert space (not necessarily separable) is a direct sum of its closed invariant subspaces. This exploration ends with a characterization of the pseudo-weighted Browder spectrum of the sum of two bounded linear operators defined over the arbitrary Hilbert spaces under certain conditions.

LIE IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • LEE, SANG KI;KANG, JOO HO
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.237-244
    • /
    • 2018
  • Let ${\mathcal{H}}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let L be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in ${\mathcal{L}}$. Let p and q be natural numbers (p < q). Let ${\mathcal{A}}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $T_{(p,q)}=0$ for all T in ${\mathcal{A}}$. If ${\mathcal{A}}$ is a Lie ideal, then $T_{(p,p)}=T_{(p+1,p+1)}={\cdots}=T_{(q,q)}$ and $T_{(i,j)}=0$, $p{\eqslantless}i{\eqslantless}q$ and i < $j{\eqslantless}q$ for all T in ${\mathcal{A}}$.

IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • Lee, Sang Ki;Kang, Joo Ho
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • Let $\mathcal{H}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let $\mathcal{L}$ be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in $\mathcal{L}$. Let p and q be natural numbers($p{\leqslant}q$). Let $\mathcal{B}_{p,q}=\{T{\in}Alg\mathcal{L}{\mid}T_{(p,q)}=0\}$. Let $\mathcal{A}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $\{0\}{\varsubsetneq}{\mathcal{A}}{\subset}{\mathcal{B}}_{p,q}$. If $\mathcal{A}$ is an ideal in $Alg{\mathcal{L}}$, then $T_{(i,j)}=0$, $p{\leqslant}i{\leqslant}q$ and $i{\leqslant}j{\leqslant}q$ for all T in $\mathcal{A}$.

SOME NUMERICAL RADIUS INEQUALITIES FOR SEMI-HILBERT SPACE OPERATORS

  • Feki, Kais
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1385-1405
    • /
    • 2021
  • Let A be a positive bounded linear operator acting on a complex Hilbert space (𝓗, ⟨·,·⟩). Let ωA(T) and ║T║A denote the A-numerical radius and the A-operator seminorm of an operator T acting on the semi-Hilbert space (𝓗, ⟨·,·⟩A), respectively, where ⟨x, y⟩A := ⟨Ax, y⟩ for all x, y ∈ 𝓗. In this paper, we show with different techniques from that used by Kittaneh in [24] that $$\frac{1}{4}{\parallel}T^{{\sharp}_A}T+TT^{{\sharp}_A}{\parallel}_A{\leq}{\omega}^2_A(T){\leq}\frac{1}{2}{\parallel}T^{{\sharp}_A}T+TT^{{\sharp}_A}{\parallel}_A.$$ Here T#A denotes a distinguished A-adjoint operator of T. Moreover, a considerable improvement of the above inequalities is proved. This allows us to compute the 𝔸-numerical radius of the operator matrix $\(\array{I&T\\0&-I}\)$ where 𝔸 = diag(A, A). In addition, several A-numerical radius inequalities for semi-Hilbert space operators are also established.

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

ON WEYL'S THEOREM FOR QUASI-CLASS A OPERATORS

  • Duggal Bhagwati P.;Jeon, In-Ho;Kim, In-Hyoun
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.899-909
    • /
    • 2006
  • Let T be a bounded linear operator on a complex infinite dimensional Hilbert space $\scr{H}$. We say that T is a quasi-class A operator if $T^*\|T^2\|T{\geq}T^*\|T\|^2T$. In this paper we prove that if T is a quasi-class A operator and f is a function analytic on a neigh-borhood or the spectrum or T, then f(T) satisfies Weyl's theorem and f($T^*$) satisfies a-Weyl's theorem.

ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION

  • Jeon, In-Ho;DUGGAL, B.P.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.4
    • /
    • pp.617-627
    • /
    • 2004
  • Let (equation omitted) denote the class of bounded linear Hilbert space operators with the property that $\midA^2\mid\geq\midA\mid^2$. In this paper we show that (equation omitted)-operators are finitely ascensive and that, for non-zero operators A and B, A (equation omitted) B is in (equation omitted) if and only if A and B are in (equation omitted). Also, it is shown that if A is an operator such that p(A) is in (equation omitted) for a non-trivial polynomial p, then Weyl's theorem holds for f(A), where f is a function analytic on an open neighborhood of the spectrum of A.