COUNTER-EXAMPLES AND DUAL OPERATOR ALGEBRAS WITH PROPERTIES $(\mathbb{A}_{m,n})$

IL BONG JUNG AND HUNG HWAN LEE

1. Introduction and Preliminaries

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . A dual algebra is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains the identity operator $I_{\mathcal{H}}$ and is closed in the ultraweak operator topology on $\mathcal{L}(\mathcal{H})$. Note that the ultraweak operator topology coincides with the weak* topology on $\mathcal{L}(\mathcal{H})$ (cf. [6]). Several functional analysists have studied the problem of solving systems of simultaneous equations in the predual of a dual algebra (cf. [3]). This theory is applied to the study of invariant subspaces and dilation theory, which are deeply related to the classes $A_{m,n}$ (that will be defined below) (cf. [3]). An abstract geometric criterion for dual algebras with property $(A_{\aleph_0}|_{\aleph_0})$ was first given in [1]. In particular, properties $X_{\theta,\gamma}$ and $E_{\theta,\gamma}^r$ (or $E_{\theta,\gamma}^\ell$), $0 \le \theta < \gamma$, have been studied as geometric criteria for membership of certain classes A_{\aleph_0,\aleph_0} and A_{1,\aleph_0} (or $A_{\aleph_0,1}$) respectively (cf. [1],[4],[5], and [7]). We consider the following question:

QUESTION 1.1. Does a dual algebra \mathcal{A} have property $(\mathbb{A}_{1,\aleph_0})$ if \mathcal{A} has property $E_{\theta,\gamma}^r$ for some $0 \le \theta < \gamma$?

This question has been motivated from the result in [3] that if a dual algebra \mathcal{A} has property $X_{\theta,\gamma}$ for some $0 \leq \theta < \gamma$, then \mathcal{A} has property $(\mathbf{A}_{\aleph_0,\aleph_0})$. Before we start the work, we recall some definitions and terminology concerning the theory of dual algebras (cf. [3],[4]). The notation employed herein agrees with that in [3] and [12].

Let $C_1(\mathcal{H})$ be the Banach space of trace class operators on \mathcal{H} equipped with the trace norm. If \mathcal{A} is a dual algebra, then it follows from [3]

Received July 30, 1993.

This work was partially supported by a research grant from Korean Research Foundation, the Ministry of Education, 1991.

that \mathcal{A} can be identified with the dual space of $\mathcal{Q}_{\mathcal{A}} = \mathcal{C}_1(\mathcal{H})/^{\perp}\mathcal{A}$, where $^{\perp}\mathcal{A}$ is the preannihilator in $\mathcal{C}_1(\mathcal{H})$ of \mathcal{A} , under the pairing $\langle T, [L]_{\mathcal{A}} \rangle = trace(TL)$, $T \in \mathcal{A}$, $[L]_{\mathcal{A}} \in \mathcal{Q}_{\mathcal{A}}$. The Banach space $\mathcal{Q}_{\mathcal{A}}$ is called a predual space of \mathcal{A} . We write [L] for $[L]_{\mathcal{A}}$ when there is no possibility of confusion. For x and y in \mathcal{H} , we define $(x \otimes y)(u) = (u, y)x$, for all $x \in \mathcal{H}$.

For $T \in \mathcal{L}(\mathcal{H})$, we denote by \mathcal{A}_T the dual algebra generated by T and denote by \mathcal{Q}_T the predual space $\mathcal{Q}_{\mathcal{A}_T}$ of \mathcal{A}_T .

Suppose m and n are cardinal numbers such that $1 \le m, n \le \aleph_0$. A dual algebra \mathcal{A} will be said to have property $(\mathbb{A}_{m,n})$ if every $m \times n$ system of simultaneous equations of the form $[x_i \otimes y_j] = [L_{ij}], \ 0 \le i < m, \ 0 \le j < n$, where $\{[L_{ij}]\}_{\substack{0 \le i < m \\ 0 \le j < n}}$ is an arbitrary $m \times n$ array from $\mathcal{Q}_{\mathcal{A}}$, has a solution $\{x_i\}_{0 \le i < m}, \ \{y_j\}_{0 \le j < n}$ consisting of a pair of sequences of vectors from \mathcal{H} . For brevity, we shall denote $(\mathbb{A}_{n,n})$ by (\mathbb{A}_n) .

We write $\mathbb D$ for the open unit disc in the complex plane $\mathbb C$ and $\mathbb T$ for the boundary of $\mathbb D$. The space $L^p = L^p(\mathbb T)$, $1 \le p \le \infty$, is the usual Lebesgue function space relative to normalized Lebesgue measure m on $\mathbb T$. The space $H^p = H^p(\mathbb T), 1 \le p \le \infty$, is the usual Hardy space. It is well-known (cf. [9]) that the space H^∞ is the dual space of L^1/H_0^1 , where

$$H_0^1 = \left\{ f \in L^1 : \int_0^{2\pi} f(e^{it})e^{int} \ dt = 0, \text{ for } n = 0, 1, 2, \dots \right\}$$
 (1.1)

and the duality is given by the pairing

$$\langle f, [g] \rangle = \int_{\mathbb{T}} fg \ dm, \text{ for } f \in H^{\infty}, [g] \in L^{1}/H_{0}^{1}.$$
 (1.2)

A contraction operator $T \in \mathcal{L}(\mathcal{H})$ is absolutely continuous if in the canonical decomposition $T = T_1 \oplus T_2$, where T_1 is a unitary operator and T_2 is a completely nonunitary contraction, T_1 is either absolutely continuous or acts on the space (0).

Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$. Then according to [3, Theorem 4.1] there exists a functional calculus Φ_T : $H^{\infty} \longrightarrow \mathcal{A}_T$ defined by $\Phi_T(f) = f(T)$ for every f in H^{∞} . The mapping Φ_T is a norm-decreasing, weak* continuous algebra homomorphism, and the range of Φ_T is weak* dense in \mathcal{A}_T . Furthermore, there exists a bounded, linear, one-to-one map ϕ_T of \mathcal{Q}_T into \mathcal{L}^1/H_0^1 such that

 $\Phi_T = \phi_T^*$. The mapping Φ_T is said to be Foiaş Nagy functional calculus. We define by $\mathbf{A} = \mathbf{A}(\mathcal{H})$ the class of all absolutely continuous contractions T in $\mathcal{L}(\mathcal{H})$ for which the functional calculus $\Phi_T : H^{\infty} \to \mathcal{A}_T$ is an isometry. Furthermore, if m and n are any cardinal numbers such that $1 \le m, n \le \aleph_0$, we define by $\mathbf{A}_{m,n} = \mathbf{A}_{m,n}(\mathcal{H})$ the set of all T in $\mathbf{A}(\mathcal{H})$ such that the singly generated dual algebra \mathcal{A}_T has property $(\mathbf{A}_{m,n})$.

Suppose $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is a dual algebra and θ is a nonnegative real number. We denote by $\mathcal{X}_{\theta}(\mathcal{A})$ the set of all [L] in $\mathcal{Q}_{\mathcal{A}}$ such that there exist sequences $\{x_i\}_{i=1}^{\infty}$ and $\{y_i\}_{i=1}^{\infty}$ of vectors from the closed unit ball of \mathcal{H} satisfying $\overline{\lim_{i\to\infty}} \|[x_i\otimes y_i]-[L]\| \leq \theta$ and $\|[x_i\otimes z]\|+\|[z\otimes y_i]\|\to 0$, for all z in \mathcal{H} . For $0\leq \theta<\gamma$, the dual algebra \mathcal{A} is said to have property $X_{\theta,\gamma}$ if the closed absolutely convex hull of the set $\mathcal{X}_{\theta}(\mathcal{A})$ (i.e. the smallest closed convex and balanced set containing $\mathcal{X}_{\theta}(\mathcal{A})$) contains the closed ball $B_{0,\gamma}$ of radius γ centered at the origin in $\mathcal{Q}_{\mathcal{A}}$: $\overline{\operatorname{aco}}(\mathcal{X}_{\theta}(\mathcal{A})) \supset \{[L] \in \mathcal{Q}_{\mathcal{A}} : \|[L]\| \leq \gamma\} = B_{0,\gamma}$.

The following is a geometric criterion for property (\mathbb{A}_{\aleph_0}) .

THEOREM 1.2 [3, Theorem 3.7]. If a dual algebra \mathcal{A} has property $X_{\theta,\gamma}$ for some $0 \leq \theta < \gamma$, then \mathcal{A} has property (\mathbb{A}_{\aleph_0}) . In particular, if $T \in \mathbb{A}$, then \mathcal{A}_T has property $X_{\theta,\gamma}$ for some $0 \leq \theta < \gamma$ if and only if \mathcal{A}_T has property (\mathbb{A}_{\aleph_0}) .

Suppose $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is a dual algebra and $0 \leq \theta < \gamma \leq 1$. We denote by $\mathcal{E}^r_{\theta}(\mathcal{A})$ ($\mathcal{E}^\ell_{\theta}(\mathcal{A})$ resp.) the set of all [L] in $\mathcal{Q}_{\mathcal{A}}$ such that there exist sequences $\{x_i\}_{i=1}^{\infty}$ and $\{y_i\}_{i=1}^{\infty}$ from the closed unit ball of \mathcal{H} satisfying $\overline{\lim}_{i\to\infty} \|[L] - [x_i \otimes y_i]\| \leq \theta$ and $\|[x_i \otimes z]\| \to 0$, for all $z \in \mathcal{H}$, ($\|[z \otimes y_i]\| \to 0$, for all $z \in \mathcal{H}$ resp.). A dual algebra \mathcal{A} is said to have property $E^r_{\theta,\gamma}$ ($E^\ell_{\theta,\gamma}$ resp.), for some $0 \leq \theta < \gamma \leq 1$, if $\overline{\operatorname{aco}}(\mathcal{E}^r_{\theta}(\mathcal{A})) \supset B_{0,\gamma}$ ($\overline{\operatorname{aco}}(\mathcal{E}^\ell_{\theta}(\mathcal{A})) \supset B_{0,\gamma}$ resp.).

The following is also a geometric criterion for property $(\mathbb{A}_{1,\aleph_0})$ or $(\mathbb{A}_{\aleph_0,1})$.

THEOREM 1.3 [4, THEOREM 6.2]. If $T \in \mathbb{A}$, then \mathcal{A}_T has property $(\mathbf{A}_{1,\aleph_0})$ (or $(\mathbf{A}_{\aleph_0,1})$, resp.) if and only if \mathcal{A}_T has property $E^r_{\theta,\gamma}$ (or $E^\ell_{\theta,\gamma}$, resp.) for some $0 \le \theta < \gamma \le 1$.

Hence according to Theorem 1.2, Theorem 1.3, and definitions of properties $X_{\theta,\gamma}$ and $E_{\theta,\gamma}^r$ it is natural to give Question 1.1, which could be expected to be affirmative. But we obtain some counter-examples

for the question in section 2. In section 3 we study matrices of dual algebras with properties $(A_{m,n})$ and further examples.

2. Counter-examples for a geometric criterion

Suppose $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is a dual algebra and $n \in \mathbb{N}$, where \mathbb{N} is the set of natural numbers. We write $\mathcal{M}_n(\mathcal{A})$ for the subalgebra of $\mathcal{L}(\mathcal{H}^{(n)})$ consisting of all $n \times n$ matrices with entries from \mathcal{A} , where $\mathcal{H}^{(n)} = \underbrace{\mathcal{H} \oplus \cdots \oplus \mathcal{H}}$. Then it follows from [1, Proposition 1.2] that $\mathcal{M}_n(\mathcal{A})$ is

a dual algebra. In particular, the predual space $\mathcal{Q}_{\mathcal{M}_n(\mathcal{A})}$ is identified with the Banach space $\mathcal{M}_n(\mathcal{Q}_{\mathcal{A}})$ consisting of all $n \times n$ matrices with entries from $\mathcal{Q}_{\mathcal{A}}$. The duality is given by the pairing

$$\langle (T_{ij}), ([L_{ij}]) \rangle = \sum_{i,j=1}^{n} \langle T_{ij}, [L_{ij}] \rangle, \tag{2.1}$$

 $(T_{ij}) \in \mathcal{M}_n(\mathcal{A}), \quad ([L_{ij}]) \in \mathcal{M}_n(\mathcal{Q}_{\mathcal{A}}).$ If $\widetilde{x} = (x_1, \dots, x_n)$ and $\widetilde{y} = (y_1, \dots, y_n)$ belong to $\mathcal{H}^{(n)}$, then $[\widetilde{x} \otimes \widetilde{y}]_{\mathcal{M}_n(\mathcal{A})}$ is identified with the $n \times n$ matrix $([x_j \otimes y_i]_{\mathcal{A}})$. It follows from [1, Proposition 1.3] that if \mathcal{A} is a dual algebra and n is a positive integer, then \mathcal{A} has property (\mathbb{A}_n) if and only if $\mathcal{M}_n(\mathcal{A})$ has property (\mathbb{A}_1) . This fact will be improved in section 3 (cf. Proposition 3.1).

The following lemma is a tool for this work.

LEMMA 2.1. Suppose $A \subset \mathcal{L}(\mathcal{H})$ is a dual algebra that has property $E_{0,\gamma}^r$ ($E_{0,\gamma}^\ell$ resp.) for some real number $\gamma > 0$. Then for each positive integer n, the dual algebra $\mathcal{M}_n(A)$ has property $E_{0,\gamma/n^2}^r$ ($E_{0,\gamma/n^2}^\ell$ resp.).

Proof. The idea of this proof comes from that of [1, Proposition 1.6]. We sketch the proof here. We set $\mathcal{B} = \mathcal{M}_n(\mathcal{A})$ for a simple notation. Then by [3, Proposition 1.21], it is sufficient to show that

$$\sup_{([L_{ij}])\in\mathcal{E}_0^r(\mathcal{B})} \left| \left\langle (A_{ij}), ([L_{ij}]) \right\rangle \right| \ge (\gamma/n^2) \| (A_{ij}) \| \tag{2.2}$$

for every matrix (A_{ij}) in $\mathcal{M}_n(\mathcal{A})$. To do so, letting $[L] \in \mathcal{E}_0^r(\mathcal{A})$, there exist sequences $\{x_i\}_{i=1}^{\infty}$ and $\{y_i\}_{i=1}^{\infty}$ of vectors from the closed unit ball

of \mathcal{H} such that $\overline{\lim} \|[L] - [x_i \otimes y_i]\| = 0$ and $\|[x_i \otimes z]\| \longrightarrow 0$ for all $z \in \mathcal{H}$. For any fixed i_0 and $j_0, 1 \leq i_0, j_0 \leq n$, and any positive integer i, we define

$$\tilde{x}_{i,i_0} = (\underbrace{0, \cdots, 0, x_i, 0, \cdots, 0}_{(n)})$$
 (2.3a)

and

$$\tilde{y}_{i,j_0} = (\underbrace{0, \cdots, 0, x_i, 0, \cdots, 0}_{(n)}).$$
(2.3b)

Then it is easy to show that $\|\tilde{x}_{i,i_0}\| \leq 1$, $\|\tilde{y}_{i,j_0}\| \leq 1$ for all $i \in \mathbb{N}$ and $\|[\tilde{x}_{i,i_0} \otimes \tilde{z}]\| \longrightarrow 0$ for all $\tilde{z} \in \mathcal{H}^{(n)}$. Finally, if we follow the proof of [1, Proposition 1.6], we can prove (2.2). Hence the proof is complete. \square

LEMMA 2.2. If a dual algebra $\mathcal{A}\subset\mathcal{L}(\mathcal{H})$ has property $E^r_{0,\gamma-\theta}$ $(E^\ell_{0,\gamma-\theta} \text{ resp.})$ for $0\leq\theta<\gamma$, then \mathcal{A} has property $E^r_{\theta,\gamma}$ ($E^\ell_{\theta,\gamma}$ resp.).

Proof. Assume that \mathcal{A} has property $E_{0,\gamma-\theta}^r$. Let $[\Lambda]$ be a coset in $\mathcal{Q}_{\mathcal{A}}$ with $\|[\Lambda]\| \leq \gamma$. Then it is sufficient to show that $[\Lambda] \in \overline{\operatorname{aco}}\mathcal{E}_{\theta}^r(\mathcal{A})$. Since

$$\|(\gamma - \theta)/\gamma)[\Lambda]\| \le \gamma - \theta,\tag{2.4}$$

we have $(\gamma - \theta)/\gamma$ [Λ] $\in \overline{\text{aco}}\mathcal{E}_0^r(\mathcal{A})$. Given $\epsilon > 0$, there exist a set $\{\alpha_k\}_{k=1}^n$ of complex numbers and $\{[L_k]\}_{k=1}^n \subset \mathcal{E}_0^r(\mathcal{A})$ such that $\alpha_k \geq 0$, $\sum_{k=1}^n \alpha_k = 1$, and

$$\left\| \frac{\gamma - \theta}{\gamma} [\Lambda] - \sum_{k=1}^{n} \alpha_k [L_k] \right\| < \epsilon. \tag{2.5}$$

So we have

$$\left\| [\Lambda] - \sum_{k=1}^{n} \alpha_k([L_k] + \frac{\theta}{\gamma}[\Lambda]) \right\| < \epsilon. \tag{2.6}$$

Moreover, since $[L_k] \in \mathcal{E}_0^r(\mathcal{A})$ and $\|(\theta/\gamma)[\Lambda]\| \leq \theta$, we have $[L_k] + (\theta/\gamma)[\Lambda] \in \mathcal{E}_{\theta}^r(\mathcal{A})$ for $1 \leq k \leq n$. Thus $[\Lambda] \in \overline{aco}\mathcal{E}_{\theta}^r(\mathcal{A})$ and the proof is complete. \square

According to Theorem 1.3, Lemma 2.1 and Lemma 2.2, we obtain easily the following theorem.

THEOREM 2.3. Suppose $n \in \mathbb{N}$ and $0 \le \theta < \gamma \le 1$ with $\gamma - \theta \le 1/n^2$. If $T \in \mathbb{A}_{1,\aleph_0}$ (or $\mathbb{A}_{\aleph_0,1}$), then $\mathcal{M}_n(\mathcal{A}_T)$ has property $E^r_{\theta,\gamma}$ (or $E^\ell_{\theta,\gamma}$, resp.).

Recall (cf. [10, Corollary 4.8]) that if S is the unilateral shift of multiplicity one, then $S^{(n)} = \underbrace{S \oplus \cdots \oplus S}_{i+1,1} \in \mathbb{A}_{n,\aleph_0} \setminus \mathbb{A}_{i+1,1}$.

The following corollary gives a negative answer for Question 1.1.

COROLLARY 2.4. If S is a unilateral shift operator of multiplicity one, then the dual algebra $\mathcal{M}_n(\mathcal{A}_S)$ has property $E_{0,1/n^2}^r$ but not property (\mathbb{A}_+) for any positive integer $n \geq 2$.

Proof. Since $S \in \mathbb{A}_{1,\aleph_0}$, it follows from Theorem 1.3 that \mathcal{A}_S has property $E^r_{0,1}$. By Lemma 2.1, the dual algebra $\mathcal{M}_n(\mathcal{A}_S)$ has property $E^r_{0,1/n^2}$. Now suppose that the dual algebra $\mathcal{M}_n(\mathcal{A}_S)$ has property (\mathbb{A}_1) . By [2, Proposition 2.3], \mathcal{A}_S has property (\mathbb{A}_n) and $S \in \mathbb{A}_n$, which contradicts the above remark. Hence the proof is complete. \square

Recall from [8] that if U is a bilateral shift of multiplicity one, then we have $U^{(n)} \in \mathbb{A}_n \backslash \mathbb{A}_{n+1}$, which implies that $S^{(n)} \oplus S^* \notin \mathbb{A}_{n+2}$, $n \in \mathbb{N}$.

COROLLARY 2.5. Let S be the unilateral shift operator of multiplicity one. Suppose $0 \le \theta < \gamma \le 1$ and $\gamma - \theta \le 1/(n+2)^2$ for some $n \in \mathbb{N}$. Then the dual algebra $\mathcal{M}_{n+2}(\mathcal{A}_{S^{(n)} \oplus S^*})$ has property $E^r_{\theta,\gamma}$ and property $E^{\ell}_{\theta,\gamma}$, but not property (\mathbb{A}_1) .

Proof. Apply the proof of Corollary 2.4 and the fact that $S^{(n)} \oplus S^* \in \mathbb{A}_{1,\aleph_0} \cap \mathbb{A}_{\aleph_0,1}$ for the first part. Moreover, the fact that $S^{(n)} \oplus S^* \notin \mathbb{A}_{n+2}$ induces easily a contraction for the second part. \square

3. Matrices of dual algebras with properties $(\mathbb{A}_{m,n})$

In this section we discuss dual algebras $\mathcal{M}_n(\mathcal{A})$ and properties $(\mathbb{A}_{m,n})$. The following theorem is an improvement of [1, Proposition 1.3] (or [11, Lemma 3.3]).

THEOREM 3.1 Let $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ be a dual algebra. Suppose that $k \in \mathbb{N}$ and $1 \leq m, n \leq \aleph_0$. Then the dual algebra $\mathcal{M}_k(A)$ has property $(\mathbb{A}_{m,n})$ if and only if \mathcal{A} has property $(\mathbb{A}_{km,kn})$.

Proof. We shall prove this theorem in the case of $1 \leq m, n < \aleph_0$ because those of other cases are similar with that. Assume that the dual algebra $\mathcal{M}_k(\mathcal{A})$ has property $(\mathbf{A}_{m,n})$. If we give a set $\{[L_{ij}]\}_{\substack{0 \leq i \leq km \\ 0 \leq j \leq kn}} \subset \mathcal{Q}_{\mathcal{A}}$, then there exist $\widetilde{x}_i, \widetilde{y}_j \in \mathcal{H}^{(k)}, \ 1 \leq i \leq m \ 1 \leq j \leq n$ such that

$$\left[\widetilde{L}_{ij}\right] = \left[\widetilde{x}_i \otimes \widetilde{y}_j\right],\tag{3.1}$$

where $[\widehat{L}_{ij}]$ denotes the transpose of the following matrix:

$$\begin{pmatrix} \begin{bmatrix} L_{(i-1)k+1,(j-1)k+1} & [L_{(i-1)k+1,(j-1)k+2}] & \cdots & [L_{(i-1)k+1,jk}] \\ [L_{(i+1)k+2,(j-1)k+1}] & [L_{(i-1)k+2,(j-1)k+2}] & \cdots & [L_{(i-1)k+2,jk}] \\ \vdots & \vdots & \ddots & \vdots \\ [L_{ik,(j-1)k+1}] & [L_{ik,(j-1)k+2}] & \cdots & [L_{ik,jk}]. \end{pmatrix}$$

Now if we say $\tilde{x}_i = x_{1i} \oplus \cdots \oplus x_{ki}$, $1 \leq i \leq m$ and $\tilde{y}_j = y_{1j} \oplus \cdots \oplus y_{kj}$, $1 \leq j \leq n$, then we have

$$\begin{bmatrix} \widetilde{x}_{i} \otimes \widetilde{y}_{j} \end{bmatrix} = \begin{bmatrix} (x_{1i} \oplus \cdots \oplus x_{ki}) \otimes (y_{1j} \oplus \cdots \oplus y_{kj}) \end{bmatrix}$$

$$= \begin{pmatrix} [x_{1i} \otimes y_{1j}] & \cdots & [x_{k_{1}} \otimes y_{1j}] \\ \vdots & \ddots & \vdots \\ [x_{1i} \otimes y_{kj}] & \cdots & [x_{k_{1}} \otimes y_{kj}] \end{pmatrix}$$

$$(3.2)$$

For a convenient notation we write

$$\begin{cases} u_1 &= x_{11}, & \cdots, & u_k = x_{k1} \\ u_{k+1} &= x_{12}, & \cdots, & u_{2k} = x_{k2} \\ \vdots & & & & \\ u_{(m-1)k} &= x_{1m}, & \cdots, & u_{mk} = x_{km}. \end{cases}$$

and

$$\begin{cases} v_1 &= y_{11}, & \cdots, & v_k = y_{1k} \\ v_{k+1} &= y_{21}, & \cdots, & v_{2k} = y_{2k} \\ \vdots & & & & \\ v_{(n-1)k} &= y_{n1}, & \cdots, & v_{nk} = y_{nk} \end{cases}$$

Then it is easy to show that $[L_{ij}] = [u_i \otimes v_j]$ for $1 \leq i \leq km$, $1 \leq j \leq kn$, which implies that \mathcal{A} has property $(\mathbf{A}_{km,kn})$.

On the other hand, the calculation for the converse implication is similar with that of the above. So we will omit it here. Hence the proof is complete. \Box

By applying Theorem 3.1 and elementary facts of properties $(\mathbb{A}_{m,n})$, we obtain the following theorem without difficulties.

THEOREM 3.2. Suppose $k, n \in \mathbb{N}$ and a dual algebra \mathcal{A} has property $(\mathbf{A}_{kn,\aleph_0})$ but not property (\mathbf{A}_{kn+1}) . Then we have

- (1) $\mathcal{M}_k(\mathcal{A})$ has property $(\mathbb{A}_{n,\aleph_0})$ but not property (\mathbb{A}_{n+1}) and
- (2) $\mathcal{M}_{k+1}(\mathcal{A})$ doesn't have property (\mathbb{A}_n) .

The following is an immediate corollary of Theorem 3.2.

COROLLARY 3.3. Let S be the unilateral shift operator of multiplicity one. Suppose $m, n \in \mathbb{N}$. Then the dual algebra $\mathcal{M}_n(\mathcal{A}_{S^{(mn)}})$ has property $(\mathbf{A}_{m,\aleph_0})$ but not property (\mathbf{A}_{n+1}) .

Finally, we close this paper with an open problem. The following conjecture comes from Professor Carl Pearcy.

Conjecture 3.4. $S \oplus S^* \notin \mathbb{A}_2$.

This implies that $\mathbb{A}_{1,2} \cap \mathbb{A}_{2,1} \neq \mathbb{A}_2$. Moreover, Conjecture 3.4 can be restated with that $\mathcal{M}_2(\mathcal{A}_{S \oplus S^{\bullet}})$ does not have property (\mathbb{A}_1) . According to Theorem 3.1 we have that $\mathcal{M}_n(\mathcal{A}_{S^{(n)} \oplus S^{\bullet}})$ has property (\mathbb{A}_1) but not property (\mathbb{A}_2) for $n \geq 2$. Since $S^{(n)} \oplus S^* \notin \mathbb{A}_{n+2}$, it is obvious that $\mathcal{M}_{n+2}(\mathcal{A}_{S^{(n)} \oplus S^{\bullet}})$ does not have property (\mathbb{A}_1) . But we don't know whether the dual algebra $\mathcal{M}_{n+1}(\mathcal{A}_{S^{(n)} \oplus S^{\bullet}})$ has property (\mathbb{A}_1) for $n \geq 1$.

ACKNOWLEDGEMENTS. The authors wish to thank Professor C. Pearcy and Professor G. Exner for helpful discussions.

References

[1] C. Apostol, H. Bercovici, C. Foias and C. Pearcy, Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. I, J. Funct Anal. 63 (1985), 369-404.

- [2] H. Bercovici, C. Foiaş and C. Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra. I, Michigan Math. J. 30 (1983), 335-354.
- [3] _____, Dual algebra with applications to invariant subspaces and dilation theory, CBMS Conf. Ser. in Math. No. 56, Amer. Math. Soc., Providence, R.I., 1985.
- [4] B. Chevreau, G. Exner and C. Pearcy, On the structure of contraction operators, III, Michigan Math. J. 36 (1989), 29-62.
- [5] B. Chevreau and C. Pearcy, On the structure of contraction operators. I, J. Funct. Anal. 76 (1988), 1-29.
- [6] J. Dixmier, Von Neumann algebras, North-Holland Publishing Company, Amst. New York, Oxford, 1969.
- [7] G. Exner and I. Jung, Dual operator algebras and a hereditary property of minimal isometric dilations, Michigan Math. J. 39 (1992), 263-270.
- [8] G. Exner and P. Sullivan, Normal operators and the classes A_n, J. Operator Theory 19 (1988), 81–94.
- [9] K. Hoffman, Banach spaces of analytic functions, Prentic-Hall, Englewood Cliffs, NJ, 1965.
- [11] I. Jung, Dual Operator Algebras and the Classes $\mathbf{A}_{m,n}$. I, J. Operator Theory 27 (1992).
- [11] I. Jung, M. Lee and and S. Lee, Separating sets and systems of simultaneous equations in the predual of an operator algebra, submitted.
- [12] Sz.-Nagy and C. Foiaş, Harmonic analysis of operators on the Hilbert space, North Holland Akademiai Kiado, Amsterdam/Budapest, 1970.

Deparement of Mathematics College of Natural Sciences Kyungpook National University Taegu 702-701, Korea