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COUNTER-EXAMPLES AND DUAL OPERATOR
ALGEBRAS WITH PROPERTIES (A, ,)

I, BoNG JUNG AND HuNG HwAN LEE

1. Introduction and Preliminaries

Let M be a separable, infinite dimensional, complex Hilbert space
and let £(H) be the algebra of all bounded Linear operators on H. A
dual algebra is a subalgebra of L('H) that contains the identity operator
Iy and is closed in the ultraweak operator topology on L{H). Note that
the ultraweak operator topology coincides with the weak* topology on
L{H) (cf. [6]). Several functional analysists have studied the problem
of solving systems of simnultaneous equations in the predual of a dual
algebra (cf. [3]). This theory is applied t¢ the study of invariant
subspaces and dilation theory, which are deeply related to the classes
A, . (that will be defined below) (cf. [3]). An abstract geometric
criterion for dual algebras with property (Ag, x,) was first given in [1].
In particnlar, properties Xg ., and Ef | (or Ef 400 <8 <5, have been
studied as geometric criteria for membership of certain classes Ay, x,
and Ajyx, (or Ag,.1) respectively (cf. [1],[4].[4]. and [7}). We consider
the following question:

QUESTION 1.1. Does a dual algebra A have property (A x,) if A
has property Ej | for some 0 < 8 < 57

This question has been motivated from the result in (3] that if a
dual algebra A has property Xg . for some J < 8 < =, then A has
property (A, », ). Before we start the work, we recall some definitions
and terminology concerning the theory of dual algebras (cf. [3],[4]).
The notation employed herein agrees with that in [3] and [12].

Let C1{H) be the Banach space of trace class operators on H equipp-
ed with the trace norm. If A is a dual algebra, then it follows from [3]
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that A can be identified with the dual space of Q4 = Z;(H)/+ A, where
1 A'is the preannihilator in C 1(H) of A, under the pairing < T,[L]4 >=
trace(TL), T € A, [L|4 € Qa. The Banach space Q4 is called a
predual space of A. We write [L] for [L] 4 when there is no possibility
of confusion. For r and y in M, we define (z @ y)(u’ = (u, y)x, for all
rcH.

For T € L(H), we denote by A7 the dual algebra generated by T
and denote by Q7 the predual space Q4, of Ar.

Suppose m and n are cardinal numbers such tha: 1<m.n <Ng. A
dual algebra A will be said to have property (Am.n) if every mxn
system of simultaneous equations of the form [v;®y ] = [L;;], 0<i <
m, 0<j < n, where {[L,;]} o<i<m is an arbitrary m x 2 array from Q 4,

has a solution {rito<icms {&1-}051-01 consisting of a pair of sequences
of vectors from H. For brevity, we shall denote (Ann) by (Ay).

We write D for the open unit disc in the complex plane C and T
for the boundary of D. The space L? = LP(T), 1<p<oo, is the usual
Lebesgue function space relative to normalized Lebesgue measure m
on T. The space H? = HP(T),1<p<oo, is the usual Hardy space. It
1s well-known (cf. [9]) that the space H* is the dual space of L!/H],
where

. peT
H! = {f eL': [ fe)e ™ dt =0, for n =0.1,2, } (1.1)

Q0

and the duality is given by the pairing
(f[g]) = /fg dm, for fe H®, [g]c L'/H]. (1.2)
Jr

A contraction operator T € L(H) is absolutely continuous if in the
canonical decomposition T = Ty@®T,, where T} is a initary operator
and T is a completely nonunitary contraction, 7} is =ither absolutely
continuous or acts on the space (0).

Let T be an absolutely continuous contraction in L(H). Then ac-
cording to [3, Theorem 4.1] there exists a functional calculus (GBS
H*—s Ay defined by ®(f) = f(T) for every f in H>*. The mapping
®7 is a norm-decreasing, weak* continuous algebra homomorphism,
and the range of & is weak* dense in Ap. Furthermore. there ex-
1sts a bounded, linear, one-to-one map ¢ of Q7 into ! /H, such that
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@7 = ¢3. The mapping ®7 is said to be Foiag Nagy functional calculus.
We define by A = A(H) the class of all absolately continuous contrac-
tions T in L(H) for which the functional calculus &4 : H>®— A4 is an
isometry. Furthermore, if rn and n are any cardinal numbers such that
1<m,n<Ry, we define by A,, » = A, (M) the set of all T in A(H)
such that the singly generated dual algebra A has property (A, ).
Suppose A C L(H) is a dual algebra anc 4 is a nonnegative real
number. We denote by Xg(A) the set of all [L] in Q4 such that there
exist sequences {z,}2, and {y;}Z, of vectors from the closed unit ball
of H satisfying im,_,co |[[r:0y,] — [L]]] < 6 and ||[z, 2]+ {2600 -
for all zin H. For 0 < 6 < 4, the dual algebra A is said to have
property Xg , if the closed absolutely convex hull of the set Xp(A)
(i.e. the smallest closed convex and balanced set containing Xs(.A})
contains the closed ball By ., of radius 7 centered at the origin in Q 4
aco(Xe(A)) D {[L] € Qa: [LY| <~} = By,

The following is a geometric eriterion for y roperty (Ag, ).

THEOREM 1.2 [3, Theorem 3.7]. If a duai algebra A has property
Xs,~ for some () < 6 < v, then A has property (Ay, ). In particular, if
T € A, then Ap has property Xg,4 for some 0 < 8 < ~ if and only if
At has property (Ay, ).

Suppose A C L(H) is a dual algebra and 0 ‘j_} < v < 1. We
denote by E5(A) ( E4(A) resp.) the set of all L] in Q4 such that
there exist sequences {r;}, and {y,}22, fron the closed unit ball of
H satisfying lim;.co [|[I] — [z, © wil]| < 8 anl [[[x, 2 z]}] = 0. for all
ze€H, (Jllz@wy]ll = 0. for all z € H resp.). A dual algebra A is
said to have property E} 4 1 Fgﬂ resp.), for some 0 < 8 < 5 < ] if
aco(E4(A)) D By | d(()( ( A)) D By, resp).

The following is also a geometric criterion for property (A ) or

(Ax, 1)

‘THEOREM 1.3 {4, THEOREM 6.2, If T € A, then Ap has pl()pf‘lfV
(A1 r,) (or (An, 1), resp.) if and only if Ay has property Ep . {or Ef
resp.) for some 0 << 0 < v < 1,

Hence according to Theorem 1.2, Theorem 1.3 and definitions of
properties Xg , and Ej _ it is natural to give Guestion 1.1, which could
be expected to be affirmative. But we obtain some counter- examples
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for the question in section 2. In section 3 we study matrices of dual
algebras with properties (A, ) and further examples.

2. Counter-examples for a geometric criterion

Suppose A C L(H) is a dual algebra and n € N, where N is the set
of natural numbers. We write M,,(A) for the subalgebra of £(H(™)
consisting of all n x n matrices with entries from A, where H") =
H®--- @ H. Then it follows from [1, Proposition 1.9] that M, (A) is

(n)
a dual algebra. [n particular, the predual space Q. a4 is identified
with the Banach space M,,(Q 4) consisting of all n x n matrices with
entries from Q4. The duality is given by the pairing

(T (L)) = Y AT, Ly, (2.1)

1,,j::]

(Ti5) € Mp(A), ([L,]) € M(Qa). If T = (1, +,orp) and § =
(¥1,- -+ ,yn) belong to H{™ | then [7 Yl m.a) is identified with the
n x n matrix ([r, ¢2y;].4). It follows from [1, Proposition 1.3] that if A
is a dual algebra and n is a positive integer, then A has proporty (Ap)
if and only if M, (A) has property (A;). This fact will be improved in
section 3 (cf. Proposition 3.1).

The following lemuna is a tool for this work.

LEMMA 2.1. Suppose A C LIH) is a dual algebra that has property

b Eéd resp. | for some real number v > 0. Then for each positive

0,y
integer n, the dual algebra M,(A) has property E&w/n‘, ( Eg‘w/n,,

resp.).
Proof. The idea of this proof comes from that of [1, Proposition 1.6].

We sketch the proof here. We set B = M,,(A) for a simple notation.
Then by (3, Proposition 1.21], it is sufficient to show that

sup ]<‘1Aij)s§.[Li]]‘)>‘ > (y/n*)I(A )] (2.2)
{([Li; DEEL(B)

for every matrix (A;;) in M, (.A). To do so, letting [Li € &EJ(A), there
exist sequences {;}72, and {y;}, of vectors from the closed unit ball

=1



Counter-examples and dual operator algebras 663

of H such that lm ||[L] — [z; ® w]|| = 0 anc ||[z, © 2]]| — 0 for all
z € H. For any fixed 7y and jo, 1 < 49, jy < n, and any positive
integer 7, we define
(20}
e e,
Fowg = (0,44 ,0,2;,0,-- ,0) (2.3a)

-

(n)

and
(Jo)

e e~
gi,jn = (O~ ) a()aIH 03' . ,0) (23b)
(n)

Then it is easy to show that ||Z; ;.|| <1, [|gi ]| < 1forall i € N and
[Z:.4, ® 2)|| — 0 for all z € H™. Finally, if we follow the proof of [1,
Proposition 1.6], we can prove (2.2). Hence the proof is complete. [

LEMMA 2.2. If a dual algebra A C L('") has property Ej_ _,
(Egp,_a resp.) for 0 < 6 < ~, then A has property Eg . ( E(;7 resp.).

Proof. Assume that A has property Ej_ 4. Let [A] be a coset in
Q. with [|[{A]]| < +. Then it is sufficient to show that [A] € aco&;{A).
Since

i =)/ NAJl <+ 9. (2.4)

we have (v — 8)/7)[A] € aco&](A). Given ¢ > 0. there exist a set
{ax}i-, of complex numbers and {[Lx]}}_, = &/(.A) such that aj >
0, i ,ar =1, and

~ 6 fﬁ .
| === Y izl
7 k=1

< €. (2.5)

So we have
T 0
ISEDIERIAESRIES (2.6)
k=1
Moreover, since [Li] € EJ(A) and [[(6/7)[A ] < 8, we have [L;] +
(0/7)[A] € £5(A) for 1 < k < n. Thus [A] € &0E;(A) and the proof is
complete. [J

According to Theorem 1.3, Lemma 2.1 and Lemma 2.2, we obtain
easily the following theorem.
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THEOREM 2.3. Suppose n € N and 0 < § < vy< 1withy -6 <
I/n* KT € Ay, (or Ay, 1), then Mnp(Ar) has property Eg ., (or
E("M resp. ).

Recall (of. [10. Corollary 4.8]) that if 5 is the vnilateral shift of
multiplicity one, then S = $¢ ..., § ¢ Anx, VA 511
e’

(n)
The following corollary gives a negative answer for Question 1.1.

COROLLARY 2.4 If S is a unilateral shift operator of multiplic-
r

ity one, then the dual algebra M, (Ag) has properts o 1 /a2 but not
property (A} for any positive iuteger n > 2.

Proof. Since & ¢ A g,. it follows from Theorem 1.3 that Ag has
property E, ;. By Lemma 2.1, tue dual algebra M (As) has property
E&,)/rﬂ' Now suppose that the dual algebra M,(Asg) has property
(Ar). By [2. Proposition 2.3], Ag has property (A, ) and S € A,
which contradicts the above remark. Hence the proof is cotplete. [

Recall from [8 that if {7 is a bilateral shift of multiplicity one, then
we have U = A VA1, which implies that S0 ¢ $* Z A, 12, n €N,

iV

COROLLARY .5, Let S be rthe unilateral shift operator of multi-
plicity one. Suppose 0 < 8 < ~ < 1 and Yy =60 < 1/(n + 2)? for some
n & N. Thoy the ‘lual algebra My, 1o{ Aginiqse ) has property Ey ., and
property E, . but not property (Aq).

Proof. Apply the proof of Corollary 2.4 and the fact that S §* €
A1 x,NAg, ) for the first part. Moreover, the fact that 5% 4. 5* ¢ Anyo
induces easily a contraction for the second part. [J

3. Matrices of dual algebras with properties (A,, )

In this section we discuss dual algebras M, (A) anc properties
{Am n). The following theorem is an improvement of [1, Proposition
1.3} (or [11, Lemma 3.3)).

THEOREM 3.1 Let A C L(H) be a dual algebra  Suppose that
k€ Nand1 <, n <Ny Then the dual algebra My(.4) has property
{(Ap n) if and onlyv if A has property (Agm kn).
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Proof. We shall prove this theorem in the case of 1 < m,n < Ry be-
cause those of other cases are similar with that. Assume that the dual
algebra My(A) has property (A, ). If we give a set {[L;;]} o<

: <

i< km (:
j<kn

Q4. then there exist 7,7, € HE) 1 <i<m 1< j<n such that

L] = [T @ 45], (3.1)
where [1?,1} denotes the transpose of the following matrix:

[L(z'—l)k+1,(_;——l)k+1] [L(i—l)k+1,(;'—-1)k+2] [L(z—l)k—%l,.)k]\
[L(i—l)k+2,tj—1)k+l] {L(i-—l)k+2,(1—1)k+2] [L(z—l)k+2,4]k}

[sz,(j—.—l)k+l] [L‘zk,(j;l)k+2] e [sz.,ij- )
Now if we say &y =z, - b, 1 <i<mand §, = yi; - gy,
1 <5 < n, then we have
Loy =[tud  ®rp) Oy, 60 yr)]
e @yl o ok 9uy) (3.2)

[r1. ® !/kj] Tk @ Yk

For a convenient notation we write

Uy =Ty o, UECE Tgy
Ukt1 =Ty, vy Uk T Jg
- Um—1)k = Tim, Tty Uk = Ykme
and
U3 =Y. oty Uk T Yk
Vk+1 = Y21, v, Uk T Yak

”(n—l)k = UYni, Uy Uny = Yuk
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Then it is easy to show that [Lij] ={ui®v;]for 1 <i<hkm, 1< j <
kn, which implies that A has property (Agm kn)-

On the other hand, the calculation for the converse implication is
similar with that of the above. So we will omit it here Hernce the proof
is complete. O

By applying Theorem 3.1 and elementary facts of properties (A, »),
we obtain the following theorem without difficulties.

THEOREM 3.2. Suppose k,n € N and a dual algebra A has property
(Akn,x,) but not property (Agnt1). Then we have
(1) Mi(A) has property (Anx,) but not property (A,4;)
and
(2) Mi41(A) doesn’t have property (A,,).

The following is an immediate corollary of Theorem 3.2,

COROLLARY 3.3. Let S be the unilateral shift operator of multi-
plicity one. Suppose m,n € N. Then the dual algebra M ,(Agimn))
has property (An, x,) but not property (Antq).

Finally, we close this paper with an open problen.. The following
conjecture comes from Professor Carl Pearcy.

CONJECTURE 3.4. S 3 S* ¢ A,.

This implies that A, , N A, # A,;. Moreover, Coajecture 3.4 can
be restated with that My(Aggse) does not have property (A;). Ac-
cording to Theorem 3.1 we have that M, (A stm@se ) has property (A;)
but not property (A;) for n > 2. Since (™ ¢ S* & Apyo. it is obvi-
ous that M, 1 5(Agn) g ) does not have property (A;). But we don’t
know whether the dual algebra M n+1(Agin) g ) has property (A,) for
n > 1.
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