• Title/Summary/Keyword: body-voltage

Search Result 477, Processing Time 0.033 seconds

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

Leakage-Suppressed SRAM with Dynamic Power Saving Scheme for Future Sub-70-nm CMOS Technology (70-nm 이하 급 초미세 CMOS 공정에서의 누설 전류 및 동적 전류 소비 억제 내장형 SRAM 설계)

  • CHOI Hun-Dae;CHOI Hyun Young;KIM Dong Myeong;KIM Daejeong;MIN Kyeung-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.343-346
    • /
    • 2004
  • This paper proposes a leakage-suppressed SRAM with dynamic power saying scheme for the future leakage-dominant sub-70-nm technology. By dynamically controlling the common source-line voltage ($V_{SL}$) of sleep cells, the sub-threshold leakage through these sleep cells can be reduced to be 1/10-1/100 due to the reverse body-bias effect, dram-induced barrier lowering (DIBL) and negative $V_{GS}$ effects. Moreover, the bit-ling leakage which mar introduce a fault during the read operation can be completely eliminated in this new SRAM. The dynamic $V_{SL}$ control can also reduce the bit-line swing during the write so that the dynamic power in write can be reduced. This new SRAM was fabricated in 0.35-${\mu}m$ CMOS process and more than $30\%$ of dynamic power saying is experimentally verified in the measurement. The leakage suppression scheme is expected to be able to reduce more than $90\%$ of total SRAM power in the future leakage-dominant 70-nm process.

  • PDF

Optimization of Double Gate Vertical Channel Tunneling Field Effect Transistor (DVTFET) with Dielectric Sidewall

  • WANG, XIANGYU;Cho, Wonhee;Baac, Hyoung Won;Seo, Dongsun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.192-198
    • /
    • 2017
  • In this paper, we propose a novel double gate vertical channel tunneling field effect transistor (DVTFET) with a dielectric sidewall and optimization characteristics. The dielectric sidewall is applied to the gate region to reduced ambipolar voltage ($V_{amb}$) and double gate structure is applied to improve on-current ($I_{ON}$) and subthreshold swing (SS). We discussed the fin width ($W_S$), body doping concentration, sidewall width ($W_{side}$), drain and gate underlap distance ($X_d$), source doping distance ($X_S$) and pocket doping length ($X_P$) of DVTFET. Each of device performance is investigated with various device parameter variations. To maximize device performance, we apply the optimum values obtained in the above discussion of a optimization simulation. The optimum results are steep SS of 32.6 mV/dec, high $I_{ON}$ of $1.2{\times}10^{-3}A/{\mu}m$ and low $V_{amb}$ of -2.0 V.

Development and Verification of Aircraft Controller and Transceiver Considering Lightning Induced Transient Susceptibility (유도낙뢰를 고려한 항공기용 제어기 및 송수신기 개발 및 검증)

  • Seo, Jung-Won;Park, Jae-Soo;Yoon, Chang-Bae;Hong, Su-Woon;Jung, Byoung-Koo;Shin, Young-Jun;Ha, Jung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.583-593
    • /
    • 2018
  • Lightning causes physical damage to aircraft, such as melting, burning and arcing, and magnetic field that occurs on the aircraft's outer body during the penetration of a lightning stroke causes voltage and current transients in the electronics and wiring within the aircraft. This effect will cause induced lightning strikes in the aircraft's internal airborne electronic systems, preventing safe flight. This paper introduces protection circuit design techniques, and the test results that meet the requirements for certification of criteria.

Development of Sensorless Hydraulic Servo System for Underwater Harbor Construction (수중항만공사용 로봇의 센서리스 유압 서보 시스템 개발)

  • Kim, T.S.;Kim, C.H.;Park, K.W.;Lee, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.708-713
    • /
    • 2004
  • This research develops a sensorless hydraulic servo system of Parallel-Typed robot for harbour construction. Purpose of the robot is to mechanize the construction, which is accomplished through a joystick's operating by a stoneworker (or diver). The robot is attached on the end of an excavator as its attachment or transported by a crane to reach the desired place. The embedded compact controller is installed on the robot body and controlled by wireless telecommunication. For underwater work, it is necessary to waterproof the robot and its sensors. Especially, a sensor waterproof is a main drawback for the underwater robot. This leads us to develop a hydraulic robot position controller using an observer which gives the position information without any position sensor. We design a neural network to identify the displacement change according to the command voltage to servo valve. To verify the sensorless controller, this paper presents the performance of the sensorless control for which the position is given by the observer comparing with that of the sensor control for which the position is measured by LVDT sensors.

  • PDF

Quality Poultry Meat Production (양질의 닭고기 생산 방안)

  • 남기홍
    • Korean Journal of Poultry Science
    • /
    • v.26 no.1
    • /
    • pp.1-25
    • /
    • 1999
  • Concerns about meat quality, including chicken meat, for the human diet has led to many attempts to manipulate the carcass fat and increase the eating quality. For actual eating quality, the birds must be grown and finished in a manner that results in meat that are tender, succulent and of good flavor, as well as being free from any foreign taint, flavor or safety hazard. Tenderization treatment with high voltage(820V) electrical stimulation and prechill muscle tensioning would improve the tenderness of chicken meat. Proper programs for the withdrawal of feed and water require a team approach for maximizing yield of meat and minimizing carcass contamination. Also effding of supplemental levels of-tocopherol to poultry with vegetable or fish oils increases of desirable polyunsaturated fatty acid(PUFA) content and stablizes the meat against rancidity and fish off-flavors. The nutritional effects of varying dietary ingredients on broiler carcass fat content are also important. Increasing the levels of energy in the ration increases the carcass fat content, while increasing the proteing levels decreases carcass fat content. Supplement-tation of poultry diets with amino acids such as methionine, lysine, glycine and tryptophan as well as amino acid such as well as amino acid mixtures can reduce body fat deposition. Normal stress leads to chicken muscular damage resulting in reduced meat quality, but this can be controlled by preslaughter management practices. Feed manufactures can utilize ntilize nutrient modulation to control pale soft exudative(PSE)syndrome. Finally, the success in poultry meat production depends on the consistent achievement of carefully selected levels of quality. Quality assurance should be the wider function of incorporating quality into the production system and the combination of motivating quality into actions and operations.

  • PDF

A Study on the High Strength of porcelain insulators for transmission line (송전용 자기재 현수애자의 고강도 특성 연구)

  • Cho, H.G.;Han, S.W.;Park, K.H.;Choi, Y.K.;Lee, D.I.;Choi, I.H.;Kim, T.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.85-88
    • /
    • 2003
  • In this study, porcelain insulator samples which have a different alumina composition were manufactured in order to test electrical and mechanical properties and make an analysis of the propagation phenomena of micro cracks on porcelain body. From XRD quantitative analysis the crystalline phases were different with alumina composition, sample C and D which have about 17wt% Corundum phase without the Cristobalite phase shows better electrical and mechanical properties than sample A and 8 which have the Cristobalite phase. In dielectrics test on porcelain samples with below 17wt% alumina composition, it was found that the amount of glass phase$(SiO_2)$have an main effect to decrease the dielectric loss$(tan{\delta})$, and the dielectric breakdown voltage of aluminous porcelain insulators was largely affected by its relative density. As a micro cracks analysis, HRS were measured, then the intensity of HRS increased with the amount of alumina composition. On the other hand, the propagation behaviors of cracks was fairly influenced by the distribution of pores.

  • PDF

A Fault Diagnosis Method in Cascaded H-bridge Multilevel Inverter Using Output Current Analysis

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2278-2288
    • /
    • 2017
  • Multilevel converter topologies are widely used in many applications. The cascaded H-bridge multilevel inverter (CHBMI), which is one of many multilevel converter topologies, has been introduced as a useful topology in high and medium power. However, it has a drawback to require a lot of switches. Therefore, the reliability of CHBMI is important factor for analyzing the performance. This paper presents a simple switch fault diagnosis method for single-phase CHBMI. There are two types of switch faults: open-fault and short-fault. In the open-fault, the body diode of faulty switch provides a freewheeling current path. However, when the short-fault occurs, the distortion of output current is different from that of the open-fault because it has an unavailable freewheeling current flow path due to a disconnection of fuse. The fault diagnosis method is based on the zero current time analysis according to zero-voltage switching states. Using the proposed method, it is possible to detect the location of faulty switch accurately. The PSIM simulation and experimental results show the effectiveness of proposed switch fault diagnosis method.

Electromagnetic Environment Analysis and Evaluation for Low Frequency Range in K-AGT System (한국형 경량전철 저주파대역 전자계환경 분석 및 평가)

  • Cho, Hong-Shik;Lee, Ho-Yong; Cho, Bong-Kwan;Ryu, Sang-Hwan;Oh, Yun-Sang;Rho, Seok-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1173_1174
    • /
    • 2009
  • Recently, the influence of electromagnetic environment for low frequency range on human body has been being argued. Light Rail Transit (LRT) System is an urban transit system which has approximately an intermediate transportation capacity between conventional subway and bus. The LRT systems have been applied and being operated in about a hundred lines around the world and many projects that apply the LRT systems in Korea are being proceeded and scheduled. LRT system is operated under the electrical circumstance of high voltage and large current and passengers are exposed in those electrical circumstance. In this paper, EMI/EMC for low frequency range of K-AGT system is measured and analyzed comparing with the international standard.

  • PDF

Effect of Artificial Caudal Fin on Performance of a Biomimetic Fish Robot Actuated by Piezoelectric Actuators (인조 꼬리지느러미가 압전작동기 구동형 생체모사 물고기 로봇의 성능에 미치는 영향)

  • Heo, Seok;Park, Hoon-Cheol;Tedy, Wiguna;Goo, Nam-Seo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.429-434
    • /
    • 2007
  • This paper presents an experimental and parametric study of a biomimetic fish robot actuated by the Lightweight Piezo-composite Actuator(LIPCA). The biomimetic aspects in this work are the oscillating tail beat motion and shape of caudal fin. Caudal fins that resemble fins of BCF(Body and Caudal fin) mode fish were made in order to perform parametric study concerning the effect of caudal fin characteristics on thrust production at an operating frequency range. The observed caudal fin characteristics are the shape, area, and aspect ratio. It was found that a high aspect ratio caudal fin contributes to high swimming speed. The fish robot was propelled by artificial caudal fins shaped after thunniform-fish and mackerel caudal fins, which have relatively high aspect ratio, produced swimming speed as high as 2.364 cm/s and 2.519 cm/s, respectively, for 300 Vpp input voltage excited at 0.9 Hz. Thrust performance of the biomimetic fish robot was examined by Strouhal number, Froude number, Reynolds number, and Net forward force.

  • PDF