• Title/Summary/Keyword: binaries: general

Search Result 15, Processing Time 0.025 seconds

GENERAL PROPERTIES OF NEAR-CONTACT BINARIES (근접촉쌍성(NCBs)의 일반적 특성)

  • 오규동;김호일;강영운;이우백
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.151-162
    • /
    • 2000
  • The general properties of the NCBs, divided into A and F types according to their spectral types, have been presented. The evolutionary status of the F type near-contact binaries are closer to that of the contact systems, i.e., W UMa type binaries, if it is assumed that the evolution of the NCBs is governed by the thermal relaxation oscillation theory. The mass-radius relation, mass-luminosity relation and H-R diagram of the NCBs provide that the A type NCBs suffer from more active mass transfer than F types. The components of the NCBs ar still in main-sequence like W UMa type stars and their two components lines parallel to the ZAMS.

  • PDF

GRAVITATIONAL WAVES AND ASTRONOMY (중력파와 천문학)

  • Lee, Hyung-Mok;Lee, Chang-Hwan;Kang, Gung-Won;Oh, John-J.;Kim, Chung-Lee;Oh, Sang-Hoon
    • Publications of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.71-87
    • /
    • 2011
  • Gravitational waves are predicted by the Einstein's theory of General Relativity. The direct detection of gravitational waves is one of the most challenging tasks in modern science and engineering due to the 'weak' nature of gravity. Recent development of the laser interferometer technology, however, makes it possible to build a detector on Earth that is sensitive up to 100-1000 Mpc for strong sources. It implies an expected detection rate of neutron star mergers, which are one of the most important targets for ground-based detectors, ranges between a few to a few hundred per year. Therefore, we expect that the gravitational-wave observation will be routine within several years. Strongest gravitational-wave sources include tight binaries composed of compact objects, supernova explosions, gamma-ray bursts, mergers of supermassive black holes, etc. Together with the electromagnetic waves, the gravitational wave observation will allow us to explore the most exotic nature of astrophysical objects as well as the very early evolution of the universe. This review provides a comprehensive overview of the theory of gravitational waves, principles of detections, gravitational-wave detectors, astrophysical sources of gravitational waves, and future prospects.

PLANETARY NEBULAE: NEW CHALLENGES IN THE 21ST CENTURY

  • KWOK SUN
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.271-278
    • /
    • 2005
  • Athough planetary nebulae (PNe) have been discovered for over 200 years, it was not until 30 years ago that we arrived at a basic understanding of their origin and evolution. Even today, with observations covering the entire electromagnetic spectrum from radio to X-ray, there are still many unanswered questions on their structure and morphology. In this review, we summarize recent theoretical and observational advances in PNe research, and discuss the roles of PNe in the chemical (atomic, molecular, and solid-state) enrichment of the galaxy and as tracers of the large scale structure of the Universe.

Relativistic Hydrodynamics and Quasiperiodic Oscillations

  • MATHEWS GRANT J.;FRAGILE P. CHRIS;WILSON JANES R.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.265-269
    • /
    • 2001
  • We present preliminary numerical simulations of tilted-disk accretion around a rotating black hole. Our goal is to explore whether hydrodynamic instabilities near the Bardeen-Petterson radius could be responsible for generating moderate-frequency quasi-periodic oscillations in X-ray binaries. We review the relevant general relativistic hydrodynamic equations, and discuss preliminary results on the structure and dynamics of a thin, Keplerian disk.

  • PDF

Current Status of Gravitational Wave Research

  • Lee, Hyung Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.77.1-77.1
    • /
    • 2014
  • Gravitational waves predicted by the general relativity almost 100 years ago have been implicated indirectly only by astrophysical observations such as the orbital evolution of binary pulsars. The advanced detectors of gravitational waves will become operational in a few years and they are expected to make direct detection of gravitational wave signal coming from merging of binaries composed of neutron stars or stellar mass black holes from external galaxies. Korean Gravitational Wave Group (KGWG) is contributing to the possible detection through the data analysis of LIGO and Virgo. We summarize the perspectives of the gravitational wave research and the impacts of the detection in the near future in astronomy and astrophysics.

  • PDF

Extraction Scheme of Function Information in Stripped Binaries using LSTM (스트립된 바이너리에서 LSTM을 이용한 함수정보 추출 기법)

  • Chang, Duhyeuk;Kim, Seon-Min;Heo, Junyoung
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.39-46
    • /
    • 2021
  • To analyze and defend malware codes, reverse engineering is used as identify function location information. However, the stripped binary is not easy to find information such as function location because function symbol information is removed. To solve this problem, there are various binary analysis tools such as BAP and BitBlaze IDA Pro, but they are based on heuristics method, so they do not perform well in general. In this paper, we propose a technique to extract function information using LSTM-based models by applying algorithms of N-byte method that is extracted binaries corresponding to reverse assembling instruments in a recursive descent method. Through experiments, the proposed techniques were superior to the existing techniques in terms of time and accuracy.

On the Period Change of the Contact Binary GW Cephei

  • Kim, Chun-Hwey;Song, Mi-Hwa;Yoon, Joh-Na;Jeong, Jang-Hae;Jeoung, Taek-Soo;Kim, Young-Jae;Kim, Jung-Yeb
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • BVR CCD observations of GW Cep were made on 15 nights in November through December 2008 with a 1-m reflector at the Jincheon station of the Chungbuk National University Observatory. Nineteen new times of minimum lights for GW Cep were determined and added to a collection of all other times of minima available to us. These data were then intensively analyzed, by reference to an O-C diagram, to deduce the general form of period variation for GW Cep. It was found that the O-C diagram could be interpreted as presenting two different forms of period change: an exclusively quasi-sinusoidal change with a period of 32.6 years and an eccentricity of 0.10; and a quasi-sinusoidal change with a period of 46.2 years and an eccentricity of 0.36 superposed on an upward parabola. Although a final conclusion is somewhat premature at present, the latter seems more plausible because late-type contact binaries allow an inter-exchange of both energy and mass between the component stars. The quasi-sinusoidal characteristics were interpreted in terms of a light-time effect due to an unseen tertiary component. The minimum masses of the tertiary component for both cases were calculated to be nearly the same as the $0.23-0.26M\;{\odot}$-ranges which is hardly detectable in a light curve synthesis. The upward parabolic O-C diagram corresponding to a secular period increase of about $4.12{\times}10^{-8}\;d/yr$ was interpreted as mass being transferred from the lesser to more massive component. The transfer rate for a conservative case was calculated to be about $2.66\;{\times}\;10^{-8}\;M_{\odot}/yr$ which is compatible with other W UMa-type contact binaries.

DEPENDENCE OF THE SENSITIVITY TO PLANETS ON THE PROPERTIES OF HIGH-MAGNIFICATION GRAVITATIONAL MICROLENSING EVENTS

  • Han, Cheong-Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.4
    • /
    • pp.109-113
    • /
    • 2011
  • In current microlensing planet searches that are being carried out in a survey/follow-up mode, the most important targets for follow-up observations are lensing events with high magnifications resulting from the very close approach of background source stars to the lens. In this paper, we investigate the dependence of the sensitivity to planets on detailed properties of high-magnification events. From this, it is found that the sensitivity does not monotonically increase as the impact parameter between the lens and the source trajectory decreases. Instead, it is roughly the same for events with impact parameters less than a certain threshold value. It is also found that events involving main-sequence source stars are sensitive to planets in a much wider range of separation and mass ratio, than those events involved with giant source stars. Based on these results, we propose observational strategies for maximal planet detections considering the types of telescopes available for follow-up observations.

A GOLDEN DECADE OF GAMMA-RAY PULSAR ASTRONOMY

  • Hui, Chung-Yue
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.6
    • /
    • pp.171-183
    • /
    • 2018
  • To celebrate the tenth anniversary since the launch of Fermi Gamma-ray Space Telescope, we take a retrospect to a series of breakthroughs Fermi has contributed to pulsar astronomy in the last decade. Apart from significantly enlarging the population of ${\gamma}$-ray pulsars, observations with the Large Area Telescope onboard Fermi also show the population is not homogeneous. Instead, many classes and sub-classes have been revealed. In this paper, we will review the properties of different types of ${\gamma}$-ray pulsars, including radio-quiet ${\gamma}$-ray pulsars, millisecond pulsars, ${\gamma}$-ray binaries. Also, we will discuss the prospects of pulsar astronomy in the high energy regime.

Horizon Run 5 Black Hole Populations and Pulsar Timing Array

  • Kim, Chunglee;Park, Hyo Sun;Kim, Juhan;Lommen, Andrea
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2021
  • Merging of two supermassive black holes would generate gravitational waves that can be detected by the Pulsar Timing Array (PTA) in the nHz band. In order to assess the plausibility of GW detection with PTA and to develop the data analysis scheme, it is important to understand the underlying properties of black holes and black hole binaries. In this work, we present mass and redshift distributions of black hole mergers using the Horizon Run 5 (HR5) data and discuss their implications for GW detection. We find a general conjecture about the black hole merger tree is true with the Horizon Run 5. For example, a) relatively lighter black holes merge at higher redshifts and b) binary mergers do contribute to the formation of more massive black holes toward low redshifts. We also present our plan to use the black hole properties extracted from the HR5 data in order to generate simulated GW signals to be injected into actual PTA data analysis pipelines. Mass and distance obtained from the HR5 would be key ingredients to generate a more realistic PTA source data set.

  • PDF