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ABSTRACT

We present preliminary numerical simulations of tilted-disk accretion around a rotating black hole. Qur goal is
to explore whether hydrodynamic instabilities near the Bardeen-Petterson radius could be responsible for gener-
ating moderate-frequency quasi-periodic oscillations in X-ray binaries. We review the relevant general relativistic
hydrodynamic equations, and discuss preliminary results on the structure and dynamics of a thin, Keplerian disk.
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I. INTRODUCTION

Accretion disks may occur around neutron stars or
low-mass (~ 3 — 10 Mg) black holes in X-ray binaries
or around very massive black holes in active galactic
nuclei (AGN). Differential Lense-Thirring precession,
or frame dragging, can have an important influence on
the structure of such disks if the central object is ro-
tating. Bardeen & Petterson (1975) showed that if the
angular momentum axes of the outer disk and the cen-
tral object are not aligned, then the disk is expected
to relax to a new configuration, a result we refer to
as the Bardeen-Petterson effect. In this new configu-
ration, the inner region of the disk is aligned with the
equitorial plane of the central object out to a transition
radius, beyond which the disk remains misaligned.

The Bardeen-Petterson transition radius is expected
to occur approximately where the differential preces-
sion frequency matches the viscous time-scale. The or-
bital frequency at this transition radius thus becomes
another fundamental frequency for the disk. We have
- conjectured (Fragile et al. 2001) that excess power may
be seen near this frequency in the X-ray power spectra
of low-mass X-ray binaries (LMXBs) due to direct in-
teractions between the outer and the inner disk. This
may provide an explanation for one class of moderate-
frequency quasi-periodic oscillations (QPOs). Pertur-
bations in the properties of the gas in the transition
region could also excite other frequency modes (Psaltis
& Norman, 2000). The Bardeen-Petterson effect could
thus generate a spectrum of tightly correlated QPOs,
such as have been observed in a large number of low-
mass X-ray binaries (Psaltis et al. 1999).

Here we provide a preliminary report on a detailed
numerical study of tilted-disk accretion onto rapidly ro-
tating low-mass black holes. Our goal with this study is
to characterize the dynamics of the gas in the transition
region and look for quasi-periodic behavior. Although

we still are in preliminary stages, some interesting be-
havior is already apparent.

II. RELATIVISTIC HYDRODYNAMICS

To treat this problem correctly requires some gener-
alization beyond much of the discussion we have heard
at this conference. First one must treat the problem
in a true four-dimensional general-relativistic curved
space time. To do this we utilize the ADM (Arnowitt
et al. 1962) metric where by the proper space-time in-
terval between any two events is conveniently split into
a three space and a time-like coordinate normal to the
hypersurface of the three-space,

ds® = —(o® = B;3%)dt? + 2Bidzidt + vi;dzida? | (1)

where « is the lapse function describing the lapse of
proper time from one hypersurface to the next and 3
is the shift vector specifying how the coordinates con-
nect from one times slice to the next. This metric has
the nice feature that the evolution of the system can
be represented as a series of space-like hypersurfaces
along a time-like coordinate. Hence, it matches one’s
Newtonian intuition.

Having made this choice, the hydrodynamic equa-
tions of motion can be made to assume a form which
is reminiscent of their Newtonian counterparts. There
are, however, some important modifications of the usu-
ally assumed perfect fluid equations of motion.

Since viscosity can play an important role in fix-
ing the Bardeen-Petterson radius, one must incorporate
viscousity and heat flow into the stress energy tensor.
Thus, we write the stress-energy tensor for an imperfect
(i.e. viscous) fluid in contravariant form as

T = p(1+ e)UHUY + Pg" 4 # | (2)

where now X is the viscous stress which includes both
the damping and heat flow terms appropriate to viscous
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fluids (Mathews & Wilson 2001). Specifically we can

write,

TR = —hPPh W, — X (h‘“’U" + h"”U“) Q,
~Ch*U*, (3)

where 7 is the shear viscosity coefficient, x is the heat
conduction coefficient, and ( is the bulk viscosity coef-
ficient. The tensor A*¥ in this equation is a projection
operator on the hyperplane normal to U#,

W = g 4+ URUY (4)

The shear tensor W#* describes the velocity gradient
for viscosity,

2
Wy = Uppy + Upip — gnga;g . (5)

The quantity @, in Eq. (3) is called the heat flow vector,
Qu=Tu+ TU”UW, ) (6)

where T is the temperature. Thé second term in this
equation is required to keep the entropy increasing in.
time. It is an odd term in that it drives an acceleration
of the fluid.

The three scalar quantities, p, €, and P in Eq. (2),
are the baryon density, internal energy, and the isotropic
pressure, respectively. The density, pressure, specific

internal energy € are related - through an equation of
state (EOS) index, T,

P =pe(I' - 1) . (7)

Note that I’ is not necessarily a constant of density,
although in the preliminary results described here we
adopt T' = 5/3.

The four-velocity U* in Eq. (2) satisfies the usual
normalization condition:

UrU, =—1. (8)

In ADM coordinates it can be related to the coordinate
three-velocity of the fluid V*

Iy,

izl Y
Ut

- B 9)

For the hydrodynamic equations of motion it is con-
venient (Wilson 1972) to introduce Lorentz-contracted
coordinate state variables:

D=pW , E=peW , S;=pWU; , (10)
where pp = [p(1 + €) + P] and W = aU*. We also let

v = /Det(vi;)
One more important generalization which we intro-
duce is the possibility of allowing the hydrodynamic

coordinate grid to move along with the fluid flow in-
dependently of the choice for the shift vector 3. For
our purposes the shift vector will be fixed by the back-
ground Kerr metric and is not necessarily aligned with
fluid flow near the Bardeen-Petterson radius. Hence,
we adopt the Euler-Lagrange approach. This is a pow-
erful tool for either Newtonian of relativistic hydrody-
namics which can be of immense value in stabilizing
advection on the grid. In this approach, a grid veloc-
ity Vgi can be exploited to minimize fluid motion with
respect to the grid and therefore maintain high accu-
racy in the advection scheme. For some systems, this
method rivals other methods we have heard discussed
at this conference (Norman 2001).

With the above choices, the fully general-relativistic
Euler-Lagrange, Navier-Stokes equations of motion can
be specified. First, the conservation of baryon flux ,

<pU“> = <DV“);N =0, (11)

leads to a relativistic continuity equation

) L1
D+D1+——a—.
v yox

i % D a i)
(VD(V —Vg))+7ﬁ<”ng> =0 .
(12)

Next, taking the four-divergence of the spatial part
of the stress-energy tensor,

(T:")w =0, (13)
we can obtain an equation for the momentum density
. 4 10 : ; S; 0 A
S; + Si—+-—(SWV =V = ——{ V]

4 g S =V + 2 (0

OxI
+ adP 8p7 Ju

el
dlna  U;Uy 0v*
2 j
- p"a<U 5 2 on
1 8 v A v

Similarly, by projecting the conservation of stress-
energy into the frame of the fluid,

UMT,)w =0, (15)

we can obtain an equation for the conservation of en-
ergy. Ultimately, this gives an equation for internal
energy

o1
rel 4 -
v

15} ) ) TE & )
i_ g/t il 71
v Oz (E(V Vg)v) * vy Ozt (ﬂg)

+ (r—1)E[W+ L9 (W(Vi—‘/'gi)’y)]

E +

W AW 8zt

- (U“E,}’) —TrUH, (16)
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(a) The Metric Tensor

For the simulations reported here, we have chosen
to work in a cylindrical three-space coordinate system.
This is a convenient system for considering accretion
flow around the central compact object.

For our first studies we have chosen a fixed back-
ground Kerr metric. This is reasonable since thin-disk
accretion flow contributes negligibly to the mass-energy
of the system. This approach does, however, omit the
self gravity of the accreting fluid, which we will have
to consider later. Nevertheless, this is a reasonable and
commonly employed assumption, which greatly simpli-
fies the problem. In the usual Boyer-Lindquist coordi-
nates r, 8, and ¢, the Kerr metric can be written

ds* = —(1 — 2Mr/%)dt*> — 4Marsin® 6/ Ldtdg
+ Z/Adr? + Zd6? + Asin®0/%d¢? ,  (17)

where a= J/M is the black hole angular momentum,
A _r —2Mr+a,2 = 72 4 g%cos?6, and A =
(r? +a%)? — a®>Asin? 6.

It is straightforward to convert from spherical Boyer-
Lindquist coordinates, r, 6, and ¢, into cylindrical co-
ordinates, R, ¢, and z, via the relations: R = rsinf
and z = rcosé.

As a further simplification for our first studies we
have also assumed that the three-space can be approx-
imated by one which is is conformally flat. That is, we
restrict the three-metric tensor to have the form

vis = ¥, (18)
where, in cylindrical coordinates,
1 0 0

Yij = < 0 R 0 ) . (19)
0 0 1

The conformal factor ¥* is a positive scalar function
describing the ratio between the scale of distance in
the curved space relative to our flat space manifold.
This approximate gauge condition is motivated by the
fact that it considerably simplifies the solution without
substantially compromising the accuracy. Of particu-
lar importance in the present application is the work of
Cook et al. (1996) who have shown that this approxima-
tion works remarkably well for axisymmetric systems.
Thus, we rewrite the three-space metric in the form of
Eq. (18). Under these restrictions, the desired metric
components are:

A
2 _
ot = 1
—2arM
L
8 .
A
4 _
w - TQE . (20)

The two remaining shift vectors, 87 and 3%, are taken
to be zero in this gauge.

(b) Code Validation and Testing

Our code is based upon the Euler-Lagrange finite
differencing methods (e.g. Wilson, 1972). We have
utilized an adaptation (cf. Wilson and Mathews 2001)
of the monotonicity advection scheme (Van Leer 1979;
Roe 1981). The code performs well when compared
with the common analytic solutions, such as the 1-D
Riemann shock tube, for mildly relativistic velocities.
The deviation between the analytic and numerical so-
lution was ~ 5% for v & 1.5, but grew to > 20% for

v 22

IIT. PRELIMINARY RESULTS

Our goals in this first preliminary study was sim-
ply to be sure that Lense-Thirring precession is indeed
present in the simulations and secondly to obtain a first
glimpse of the kind of instabilities likely to be present.
Consequently, our first simulation is that of a slightly
tilted thin non-viscous accretion disk around a maxi-
mally rotating black hole. We have also replaced a full
radiative transport calculation, with a volume integra-
tion of the Steffan-Boltzmann luminosity. This should
give an indication of the anticipated luminosity in the
limit of an optically thin disk. Full radiation transport
will ultimately be important in a study of tilted-disk
accretion. Nevertheless, this work prov1des a founda-
tion upon which to proceed

(a) Initial Model

We adopt an initial model similar to that of Nelson &
Papaloizou (2000). That is, we begin with a stationary
thin Keplerian accretion disk tilted &~ 1° with respect
to the angular momentum axis of the black hole. We
then allow this disk to evolve under the influence of
accretion flow and Lense-Thirring precession.

For initial conditions, we use the standard thin-disk
model as outlined in Pringle (1981). This model con-
siders a thin gaseous disk of surface density £ and cen-
tral density p. = ¥/H, where H is the thickness of
the disk. The gas in the disk orbits around the black
hole with a Keplerian angular velocity Q. = V¢ =

(GM/R")Y/? where primed coordinates refer to the
equitorial plane of the disk. The thickness of the disk
is regulated by the pressure, P, which supports the gas
against the vertical component of gravity.

In the standard disk equation, matter in the disk
is assumed to gradually drift inward due to a viscous
stress tgy = —aP, where « is the Shakura & Sunyaev
(1973) viscosity parameter In a steady accretion disk,
the inward drift of material is governed by the angular
momentum equation,

9 o 30 )
Rlza—‘R—f( KepR, ) 28R' (VZQKepRI ) 5 (21)
where VR = —M/2rR'S is the drift velocity, v =

ac,H is the kinematic viscosity coefficient, and ¢,
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(dP/dp)'/? is the local sound speed in the gas.

For a compact body such as a black hole or neutron
star, orbital motion becomes unstable in the vicinity of
the object and gas falls onto the object with a constant
angular momentum. Our standard disk model treats
the transition to free fall by assuming tgg = 0 at the
radius of the last marginally stable orbit R,s. For a
Schwarzschild black hole, R,,s = 6Rggr, while for a
maximally rotating Kerr black hole, Rps = Rgr.

In this model, we initially assume that the orbital
energy is dissipated through viscous heating in the disk
and is then efficiently radiated away from the two faces
of the disk. The initial disk is therefore cold and thin,
¢, € R'V?  H « R', and the accretion is slow, V' «
RVY.

Although radiation pressure may in fact dominate
over gas pressure near the inner edge of the disk
(Shakura & Sunyaev 1973), such a configuration may
not be stable (Lightman & Eardley 1974; Shakura &
Sunyaev 1976). For simplicity, we assume that the gas
pressure is dominant throughout (i.e. P, > F;).

(b) Disk Evolution

For this work we have considered a 10Mg maximally
rotating (a = M) black hole as the central compact ob-
ject. For optimum speed in these initial simulations, we
limited the computational grid size to approximately
200,000 grid zones in our full simulation. Because of
the very thin, extended nature of the disk being mod-
eled, we had to concentrate most of this resolution in
the R and ¢ directions. This left us with fairly coarse
resolution in the z direction. This also restricted us
to relatively modest tilt angles for the disk. Here we
consider a tilt angle of § ~ 1°. Although this should be
sufficient for us to study the Bardeen-Petterson effect
numerically, such a small tilt angle may not be suffi-
cient to generate observable quasi-periodic oscillations
in the resultant X-ray power spectrum as discussed in
(Fragile, Mathews & Wilson 2001).

Two remaining parameters need to be specified in
order to solve the initial disk equations outlined above.
These are the viscosity parameter a and the accretion
rate M. We chose these initially to be @ = 0.1 and
M = Mggq. Note, however, that these parameters
are only oresently used to define the disk initial model.
They were not included in the fluid equations of motion
for this initial study.

From these initial conditions, this disk was evolved
under the influence of the Kerr geometry using the hy-
drodynamic equations. We followed the temporal evo-
lution for about 12 ms. For comparison, the orbital
period at the marginally stable orbit for this configu-
ration is =~ 0.6 ms, so we evolved material for about 20
orbits. We observed that disk became highly excited
and heated as material accumulated near the centrifu-
gal barrier. This is consistent with other results pre-
sented at this conference (Molteni 2001). This resulted

in a sequence of flares exiting vertically from the disk.
A rough volume integration of the internal energy dur-
ing this instability suggests roughly periodic outbursts
in which orders of magnitude variations in the radi-
ated energy can be emitted as this instability develops.
All of this is preliminary, but at least suggestive that
QPO’s may ultimately emerge from this simulation.

IV. DISCUSSION

An observed association of a QPO with the orbital
frequency at the Bardeen-Petterson transition radius
could provide important constraints on the mass and
angular momentum of the accreting body and possibly
on the properties of the accretion disk. Furthermore,
identification of such QPOs in several LMXBs could
provide information about the relative abundance of
tilted-disk accretion systems, which is important in un-
derstanding their formation and evolution.

This study has allowed us to get an initial glimpse at
tilted-disk accretion. Thus far we have not conclusively
identified an instability with the characteristics of the
speculated moderate frequency QPO. Nevertheless, we
have clearly seen that a tilted accretion disk around
a rapidly-rotating compact object will undergo severe
twisting due to relativistic frame dragging. Longer,
more detailed simulations should allow more thorough
characterization of the effects studied here. Further
improvements to the code, such as incorporating vis-
cosity and radiative transport, will help determine the
observational consequences of our results.
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