DOI QR코드

DOI QR Code

GRAVITATIONAL WAVES AND ASTRONOMY

중력파와 천문학

  • Lee, Hyung-Mok (Department of Physics and Astronomy, Seoul National University) ;
  • Lee, Chang-Hwan (Department of Physics, Pusan National University) ;
  • Kang, Gung-Won (Korea Institute for Science and Technology Information) ;
  • Oh, John-J. (National Institute for Mathematical Sciences, KT Daeduck Research Center) ;
  • Kim, Chung-Lee (Department of Physics, West Virginia University) ;
  • Oh, Sang-Hoon (National Institute for Mathematical Sciences, KT Daeduck Research Center)
  • Received : 2011.06.14
  • Accepted : 2011.06.27
  • Published : 2011.06.06

Abstract

Gravitational waves are predicted by the Einstein's theory of General Relativity. The direct detection of gravitational waves is one of the most challenging tasks in modern science and engineering due to the 'weak' nature of gravity. Recent development of the laser interferometer technology, however, makes it possible to build a detector on Earth that is sensitive up to 100-1000 Mpc for strong sources. It implies an expected detection rate of neutron star mergers, which are one of the most important targets for ground-based detectors, ranges between a few to a few hundred per year. Therefore, we expect that the gravitational-wave observation will be routine within several years. Strongest gravitational-wave sources include tight binaries composed of compact objects, supernova explosions, gamma-ray bursts, mergers of supermassive black holes, etc. Together with the electromagnetic waves, the gravitational wave observation will allow us to explore the most exotic nature of astrophysical objects as well as the very early evolution of the universe. This review provides a comprehensive overview of the theory of gravitational waves, principles of detections, gravitational-wave detectors, astrophysical sources of gravitational waves, and future prospects.

Keywords

References

  1. Abadie, J., et al., 2010, Predictions for the Rates of Compact Binary Coalescences Observable by Ground-Based Gravitational-Wave Detectors, Class. Quant. Grav., 27, 173001 https://doi.org/10.1088/0264-9381/27/17/173001
  2. Abbott, B., et al., 2005, Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data, Phys. Rev. Lett., 94, 81103
  3. Abramovici, A., et al., 1992, LIGO - The Laser Interferometer Gravitational-Wave Observatory, Science, 256, 325 https://doi.org/10.1126/science.256.5055.325
  4. Ajith, P., et al., 2008, A Template Bank for Gravitational Waveforms from Coalescing Binary Black Holes: Non-Spinning Binaries, Phys. Rev. D, 77, 104017 [Erratum-ibid. D, 79, 129901 (2009)] https://doi.org/10.1103/PhysRevD.77.104017
  5. Anderson, P. W. & Itoh, N., 1975, Pulsar Glitches and Restlessness as a Hard Superfluidity Phenomenon, Nature, 256, 25 https://doi.org/10.1038/256025a0
  6. Antonucci, F., et al., 2011, LISA Pathfinder: Mission and Status, Class. Quant. Grav., 28, 094001 https://doi.org/10.1088/0264-9381/28/9/094001
  7. Baker, J. G., Centrella, J., Choi, D. -I., Koppitz, M., & van Meter, J., 2006, Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes, Phys. Rev. Lett., 96, 111102 https://doi.org/10.1103/PhysRevLett.96.111102
  8. Baker, J. G., McWilliams, S. T., van Meter, J. R., Centrella, J., Choi, D. -I., Kelly, B. J., & Koppitz, M., 2007, Binary Black Hole Late Inspiral: Simulations for Gravitational Wave Observations, Phys. Rev. D, 75, 124024 https://doi.org/10.1103/PhysRevD.75.124024
  9. Bradaschia, C., et al., 1992, Virgo: Very Wide Band Interferometric Gravitational Wave Antenna, Nuclear Physics B Proceedings Supplements, 28, 54 https://doi.org/10.1016/0920-5632(92)90146-J
  10. Campanelli, M., Lousto, C. O., Marronetti, P., & Zlochower, Y., 2006, Accurate Evolutions of Orbiting Black Hole Binaries Without Excision, Phys. Rev. Lett., 96, 111101 https://doi.org/10.1103/PhysRevLett.96.111101
  11. Cutler, C. & Thorne, K. S., 2002, An Overview of Gravitational-Wave Sources, Proceedings of GR16 (Durban, South Africa 2001), arXiv: gr-qc/0204909
  12. Danzmann, K. & the LISA study team, 1996, LISA Pre-phase A report , MPQ209
  13. Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T., 2010, A Two-Solar-Mass Neutron Star Measured Using Shapiro Delay, Nature, 467, 1081 https://doi.org/10.1038/nature09466
  14. Detweiler, S., 1979, Pulsar Timing Measurements and the Search for Gravitational Waves, ApJ, 234, 1100 https://doi.org/10.1086/157593
  15. Hahn, S. G. & Lindquist, R. W., 1964, The Two-Body Problem in Geometrodynamics, Ann. Phys., 29, 304 https://doi.org/10.1016/0003-4916(64)90223-4
  16. Harry, G. M., 2010, Advanced LIGO: the Next Generation of Gravitational Wave Detectors, Class. Quant. Grav., 27, 084006 https://doi.org/10.1088/0264-9381/27/8/084006
  17. Hobbs, G., et al., 2010, The International Pulsar Timing Array Project: Using Pulsars as a Gravitational Wave Detector, Class. Quant. Grav., 27, 084013 https://doi.org/10.1088/0264-9381/27/8/084013
  18. Hotokezaka, K., Kyutoku, K., Okawa, H., Shibata, M., & Kiuchi, K., 2011, Binary Neutron Star Mergers: Dependence on the Nuclear Equation of State, Phys. Rev. D, 83, 124008 https://doi.org/10.1103/PhysRevD.83.124008
  19. Hulse, R. & Taylor, J., 1975, Discovery of a Pulsar in a Binary System, ApJ, 195, L51 https://doi.org/10.1086/181708
  20. Kawamura, S., et al., 2011, The Japanese Space Gravitational Wave Antenna: DECIGO, Class. Quant. Grav., 28, 094011 https://doi.org/10.1088/0264-9381/28/9/094011
  21. Kim, C., Kalogera, V., & Lorimer, D. R., 2010, The Effect of PSR J0737-3039 on the DNS Merger Rate and Implications for Gravity-Wave Detection, New Astronomy Reviews, 54, 148 https://doi.org/10.1016/j.newar.2010.09.010
  22. Kim, J., et al., 2011, in preparation
  23. Kuroda, K., 2010, Status of LCGT, Class. Quant. Grav., 27, 084004 https://doi.org/10.1088/0264-9381/27/8/084004
  24. Lattimer, J. & Prakash, M., 2007, Neutron Star Observations: Prognosis for Equation of State Constraints, Phys. Rep., 442, 109 https://doi.org/10.1016/j.physrep.2007.02.003
  25. O'Shaughnessy, R. & Kim, C., 2010, Pulsar Binary Birthrates with Spin-Opening Angle Correlations, ApJ, 715, 230 https://doi.org/10.1088/0004-637X/715/1/230
  26. Ott, C. D., 2009, Probing the Core-Collapse Supernova Mechanism with Gravitational Waves, Class. Quant. Grav., 26, 204015 https://doi.org/10.1088/0264-9381/26/20/204015
  27. Phinney, S., et al., 2003, NASA Mission Concept Study
  28. Pirani, A. E. F., 1956, Acta Phys. Polon., 15, 389
  29. Pitkin, M., et al., 2011, Gravitational Wave Detection by Interferometry (Ground and Space), arXiv:1102.3355
  30. Pretorius, F., 2005, Evolution of Binary Black-Hole Spacetimes, Phys. Rev. Lett., 95, 121101 https://doi.org/10.1103/PhysRevLett.95.121101
  31. Pretorius, F., 2007, Binary Black Hole Coalescence, arXiv:0710.1338
  32. Punturo, M., et al., 2010, The Einstein Telescope: a Third-Generation Gravitational Wave Observatory, Class. Quant. Grav., 27, 194002 https://doi.org/10.1088/0264-9381/27/19/194002
  33. Radhakrishnan, V. & Manchester, R. N., 1969, Detection of a Change of State in the Pulsar PSR 0833-45, Nature, 222, 228 https://doi.org/10.1038/222228a0
  34. Ruderman, M., 1969, Neutron Starquakes and Pulsar Periods, Nature, 223, 597
  35. Waldman, S. J, 2011, The Advanced LIGO Gravitational Wave Detector, arXiv:1103.2728
  36. Weber, J., 1960, Detection and Generation of Gravitational Waves, Phys. Rev., 117, 306 https://doi.org/10.1103/PhysRev.117.306
  37. Weiss, R., 1973, Quarterly Reports of the Research Laboratory of Electronics MIT, 105, 54
  38. Weisberg, J. M., Nice, D. J., & Taylor, J. H., 2010, Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16, ApJ, 722, 1030 https://doi.org/10.1088/0004-637X/722/2/1030