DOI QR코드

DOI QR Code

COSMOLOGICAL LINEAR PERTURBATION THEORY

우주구조 선형건드림 이론

  • Received : 2011.05.16
  • Accepted : 2011.05.31
  • Published : 2011.06.06

Abstract

Cosmological linear perturbation theory has fundamental importance in securing the current cosmological paradigm by connecting theories with observations. Here we present an explanation of the method used in relativistic cosmological perturbation theory and show the derivation of basic perturbation equations.

Keywords

References

  1. Bardeen, J. M., 1980, Gauge-Invariant Cosmological Perturbations, Phys. Rev. D, 22, 1882 https://doi.org/10.1103/PhysRevD.22.1882
  2. Bardeen, J. M., 1988, Particle Physics and Cosmology, edited by L. Fang and A. Zee (Gordon and Breach:London)
  3. Chibisov, G. V. & Mukhanov, V. F., 1982, Galaxy Formation and Phonons, MNRAS, 200, 535 https://doi.org/10.1093/mnras/200.3.535
  4. Field, G. B. & Shepley, L. C., 1968, Density Perturbations in Cosmological Models, Ap&SS, 1, 309
  5. Harrison, E. R., 1967, Normal Modes of Vibrations of the Universe, Rev. Mod. Phys., 39, 862 https://doi.org/10.1103/RevModPhys.39.862
  6. Hwang, J., 1991, Perturbations of the Robertson-Walker Space - Multicomponent Sources and Generalized Gravity, ApJ, 375, 443 https://doi.org/10.1086/170206
  7. Hwang, J., 1993, Curved Space Quantum Scalar Field Theory with Accompanying Metric Fluctuations, Phys. Rev. D, 48, 3544 https://doi.org/10.1103/PhysRevD.48.3544
  8. Hwang, J., 1994, Perturbative Semiclassical Approximation in the Uniform Curvature Gauge, Class. Quant. Grav., 11, 2305 https://doi.org/10.1088/0264-9381/11/9/012
  9. Hwang, J. & Noh, H., 1999a, Relativistic Hydrodynamic Cosmological Perturbations, Gen. Rel. Grav., 31, 1131 https://doi.org/10.1023/A:1026752103084
  10. Hwang, J. & Noh, H., 1999b, Sachs-Wolfe Effect: Gauge Independence and a General Expression, Phys. Rev. D, 59, 067302 https://doi.org/10.1103/PhysRevD.59.067302
  11. Hwang, J. & Noh, H., 2000, Cosmological Perturbations with Multiple Scalar Fields, Phys. Lett. B, 495, 277 https://doi.org/10.1016/S0370-2693(00)01253-3
  12. Hwang, J. & Noh, H., 2002, Cosmological Perturbations with Multiple Fluids and Fields, Class. Quant. Grav., 19, 527 https://doi.org/10.1088/0264-9381/19/3/308
  13. Hwang, J. & Noh, H., 2002, Gauge-Ready Formulation of the Cosmological Kinetic Theory in Generalized Gravity Theories, Phys. Rev. D, 65, 023512
  14. Hwang, J. & Noh, H., 2005, Classical Evolution and Quantum Generation in Generalized Gravity Theories Including String Corrections and Tachyons: Unified Analyses, Phys. Rev. D, 71, 063536 https://doi.org/10.1103/PhysRevD.71.063536
  15. Kodama H. & Sasaki, M., 1984, Cosmological Perturbation Theory, Prog. Theor. Phys. Suppl., 78, 1 https://doi.org/10.1143/PTPS.78.1
  16. Lukash, V. N., 1980a, Production of Sound Waves in the Early Universe, Sov. Phys. JETP Lett., 31, 596
  17. Lukash, V. N., 1980b, Production of Phonons in an Isotropic Universe, Sov. Phys. JETP, 52, 807
  18. Mukhanov, V. F., 1988, Quantum Theory of Gauge Invariant Cosmological Perturbations, Sov. Phys. JETP, 68 1297
  19. Nariai, H., 1969, The Lagrangian Approach to the Gravitational Instability in an Expanding Universe, Prog. Theor. Phys., 41, 686 https://doi.org/10.1143/PTP.41.686
  20. Noh, N. & Hwang, J., 2004, Second-Order Perturbations of the Friedmann World Model, Phys. Rev. D, 69, 104011 https://doi.org/10.1103/PhysRevD.69.104011
  21. Sachs, R. K. &Wolfe, A. M., 1967, Perturbations of a Cosmological Model and Angular Variations of the Microwave Background, ApJ, 147, 73 https://doi.org/10.1086/148982