• Title/Summary/Keyword: berm

Search Result 308, Processing Time 0.024 seconds

A Study on the Deposition Characteristics of Debris Flow Using Small-scaled Laboratory Test (실내 모형실험을 통한 토석류 퇴적 특성 연구)

  • Chang, Hyungjoon;Ryou, Kukhyun;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.2
    • /
    • pp.25-33
    • /
    • 2021
  • This study was conducted to understand the deposition characteristics of debris flow and to analyze the reduction effect of debris flow damage by installing a berm. Flume experiments were performed in consideration of various channel slope and volumetric sediment concontration. In order to analyze the reduction effect of debris flow damage by installing a berm, the cases of not installing a berm and the cases of installing a berm were compared. In this study, the runout distance, total travel distance, and mobility ratio were analyzed among the deposition characteristics of debris flow. First, the deposition characteristics of debris flow according to the change of the channel slope were analyzed, and the deposition characteristics of debris flow due to the change of volumetric sediment concentration were analyzed. In addition, the change rate of debris flow deposition characteristics when a berm was installed was calculated based on the case when a berm was not installed. As a result of the experiments, it was confirmed that the channel slope and volumetric sediment concentration had a significant effect on the deposition characteristics of debris flow. In addition, when a berm is installed on the slope, the runout distance and mobility ratio of debris flow are greatly decreased, and the total travel distance is increased. This means that installing a berm delays the movement of debris flow and reduces the potential mobility of debris flow. The results of this study will provide useful information for understanding the deposition characteristics of debris flow. Furthermore, it is expected to help in the design of a berm.

The Study of Relationship between Berm Width and Debris Flow at the Slope (사면에서 토석류와 소단폭의 관계성에 관한 연구)

  • Kim, Sungduk;Oh, Sewook;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.5-12
    • /
    • 2013
  • The purpose of this study is to estimate the behavior and the mechanism of debris flow at the end of mountain side when a berm was set on the inclined plane. The numerical model was performed by using the Finite Difference Method(FDM) based on the equation for the mass conservation and momentum conservation. In order to measure the behavior of the debris flow, the debris flow of a straight channel slope and the debris flow of channel slope with 3 types of berms were compared. First, the flow discharge and the sediment volume concentration at the downstream of the channel slope, depending on the various berm width and the different inflow discharges at the upstream of the channel were analyzed. The longer the berm width, the flow discharge at the downstream of the channel was decreased and the high flow fluctuation was reduced by a berm. And it means that a berm can effect for the delay of the debris flow. Through Root Mean Square ratio(RMS) comparison, the flow discharge of the channel slope with a berm was lower than that of a straight channel slope. The longer the berm width, for the sediment volume concentration, an inflection point did not show but mild curve. Because the low sediment concentration with water mixture by a berm continuously flow at the downstream end, it will be effect for reducing the disaster caused by debris flow. The results of this study will provide useful information in predicting and preventing disaster caused by the debris flow.

Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

  • Mandal, Sukomal;Rao, Subba;N., Harish;Lokesha, Lokesha
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.112-122
    • /
    • 2012
  • The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.

Experimental study on Run-up of S-berm-Typed Rubble Mound Breakwaters (S-소단 경사식 방파제에서의 처오름에 대한 실험연구)

  • Ahn, Tae-Jun;Park, Seung-Hyuun;Jang, Won-Jae;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1919-1924
    • /
    • 2006
  • In this study, the run-up of water waves on slopes of s-berm breakwaters was investigated by performing a series of hydraulic experiments. The run-up height was analyzed in detail by using the effects of wave steepness and surf similarity parameter. In general, the run-up heights were decreased as the height and the width of berm were increased. However, the variation of run-up height was small for change of wave steepness and surf similarity parameter.

  • PDF

Morphologic Response of Gravel Beach to Typhoon Invasion - A Case Study of Gamji Beach Taejongdae in Busan (태풍 내습 시 자갈 해빈의 지형반응 - 부산 태종대 감지 해빈의 사례)

  • Lee, Young Yun;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.19-30
    • /
    • 2020
  • To understand the impact of typhoons on Gamji gravel beach Taejongdae in Busan, we carried out beach profiling using a VRS-GPS system and a Drone photogrammetry for the typhoons 'Kong-rey' invaded in October 2018 and 'Danas' in July 2019. In addition, grain sizes are analyzed to investigate the overall distribution pattern of gravels on the beach, and the beach topography is surveyed periodically to confirm the recovery rate of the beach. Grain-size analysis reveals that mean gravel sizes, in general, become finer from -6.2Φ to -5.4Φ towards the east in the seashore line direction. Variation in mean sizes is obviously observed in the cross-shore direction. Gravels in the swash zone are relatively fine about -4.5Φ in size and equant in shape, whereas the coarse and oblate gravels ranged from -5Φ to -6Φ are found in the berm. Gamji gravel beach particularly has two lines of berms: a lower berm situated facing beach and an upper berm about 10 m landward. After the typhoon Kong-rey passed by, about 1.4 m of severe erosion in upper berm occurred, and the berm eventually disappeared. On the backshore of the upper berm about 50 cm of erosion took place so that the elevation became lower. However, tangible erosion was not observed in the lower berm. When typhoon Danas hit, rated as mild storm, both upper and lower berm were eroded out. However, about 50 cm of deposition occurred only in the backshore. Only three days later, the new lower berm was formed, meaning that sedimentation rate must be high. This result indicates that Gamji gravel beach is recovered very fast from erosion caused by the typhoons when it is under the fair-weather condition even though beach morphology changes dramatically in a short period of time. Gravel beach is estimated to be or evaluated very resilient to typhoon erosion.

An Experimental Study for Drainage Capacity Improvement of Waterway with Steep Slope (급경사 사면 도수로의 배수능력 개선을 위한 실험적 연구)

  • Kim, Jung Soo;Kim, Ju Hyung;Yoon, Sei Eui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2303-2315
    • /
    • 2013
  • In general, the waterway was installed for drain water from steep slope and waterway cover was set up to prevent overflow and water separation at berm of waterway. In this study, hydraulic experiment was conducted to analyze the flow characteristics and enact standard design criteria of the waterway. Hydraulic experimental apparatus which can change the slope of waterway and the length of berm were installed to analyze of flow characteristics at the waterway. The slopes of waterway were $40^{\circ}$, $50^{\circ}$, $60^{\circ}$, and $70^{\circ}$ and the range of discharge were 1.0~5.6 ${\ell}/s$. The flow in berm was distinguished two types such as hydraulic jump and splash flow. These kinds of flows depended on the rates of discharge in waterway. When inlet discharge was below 1.1~2.0 ${\ell}/s$, the separation phenomenon of water was generated at upper and lower portion in berm by the splash flow. The scattering range of water particles and length of water separation was measured depending on the slope of waterway. The start point of scattering was about 20 cm(1.3B) from the place connected upper waterway with brem and the length of water separation was till 210 cm(3.5B) from the place connected lower waterway with brem. Therefore, the waterway cover needed to install from starting of berm to 1B and from the lower part of berm to 3.5B.

Experimental study on Run-up of S-berm-Typed Rubble Mound Breakwaters (S-소단 경사식 방파제에서의 처오름에 대한 실험연구)

  • Ahn, Tae-Jun;Kim, Young-Taek;Park, Seung-Hyun;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.147-153
    • /
    • 2006
  • In this study, the run-up of water waves on slopes of s-berm breakwaters was investigated by performing a series of hydraulic experiments. The run-up height was analyzed in detail by using the effects of wave steepness and surf similarity parameter. In general, the run-up heights were decreased as the height and the width of berm were increased. However, the variation of run-up height was small for change of wave steepness and surf similarity parameter.

Determination of Wave Run-up Height on S-berm Breakwater (복합사면에서의 도파고 산정)

  • 유동훈;이대석
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.202-208
    • /
    • 2001
  • Explicit approximation has been developed to estimate the run-up height on S-berm breakwater on the basis of Saville's hypothetical slope method. For the explicit expression of run-up height several relations are developed to represent the ratio of run-up height against breakwater slope with various conditions of water depth and wave steepness. For the verification of explicit approximation the results are compared with Saville's measurement data and simple expression of Delft Hydraulic Laboratory.

  • PDF

A study on characteristics of overtopping rate with Berm's size at the low crest breakwater (저천단 방파제에서의 소단규모에 따른 월파특성에 관한 연구)

  • Kim, Hong-Jin;Jeon, Yong-Ho;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.113-118
    • /
    • 2002
  • Wave overtopping is one of the most important hydraulic responses of breakwater because it significantly affects its functional efficiency, the safety of transit and mooring on the rear side, wave transmission in the sheltered area, rear side armor stones and to some extent, the structural safety itself. The hydrodynamic characteristics of low crest breakwater by the overtopping rate can be summarized as follows: 1. It is better to use maximum overtopping rate than to use mean overtopping rate for design of coastal structures. 2. Maximum overtopping rate was increase with wave steepness (between 0.01 and 0.02). 3. Overtopping rate is decreased when relation length of berm was over wave length.

  • PDF