DOI QR코드

DOI QR Code

Morphologic Response of Gravel Beach to Typhoon Invasion - A Case Study of Gamji Beach Taejongdae in Busan

태풍 내습 시 자갈 해빈의 지형반응 - 부산 태종대 감지 해빈의 사례

  • Lee, Young Yun (Department of Ocean Science, Korea Maritime and Ocean University) ;
  • Chang, Tae Soo (Department of Ocean Science, Korea Maritime and Ocean University)
  • 이영윤 (한국해양대학교 해양환경학과) ;
  • 장태수 (한국해양대학교 해양환경학과)
  • Received : 2019.12.16
  • Accepted : 2020.02.11
  • Published : 2020.02.29

Abstract

To understand the impact of typhoons on Gamji gravel beach Taejongdae in Busan, we carried out beach profiling using a VRS-GPS system and a Drone photogrammetry for the typhoons 'Kong-rey' invaded in October 2018 and 'Danas' in July 2019. In addition, grain sizes are analyzed to investigate the overall distribution pattern of gravels on the beach, and the beach topography is surveyed periodically to confirm the recovery rate of the beach. Grain-size analysis reveals that mean gravel sizes, in general, become finer from -6.2Φ to -5.4Φ towards the east in the seashore line direction. Variation in mean sizes is obviously observed in the cross-shore direction. Gravels in the swash zone are relatively fine about -4.5Φ in size and equant in shape, whereas the coarse and oblate gravels ranged from -5Φ to -6Φ are found in the berm. Gamji gravel beach particularly has two lines of berms: a lower berm situated facing beach and an upper berm about 10 m landward. After the typhoon Kong-rey passed by, about 1.4 m of severe erosion in upper berm occurred, and the berm eventually disappeared. On the backshore of the upper berm about 50 cm of erosion took place so that the elevation became lower. However, tangible erosion was not observed in the lower berm. When typhoon Danas hit, rated as mild storm, both upper and lower berm were eroded out. However, about 50 cm of deposition occurred only in the backshore. Only three days later, the new lower berm was formed, meaning that sedimentation rate must be high. This result indicates that Gamji gravel beach is recovered very fast from erosion caused by the typhoons when it is under the fair-weather condition even though beach morphology changes dramatically in a short period of time. Gravel beach is estimated to be or evaluated very resilient to typhoon erosion.

자갈해빈에 대한 태풍의 영향력을 조사하기 위하여 태종대 감지 자갈해빈에서 2018년 10월에 내습한 태풍 '콩레이'와 2019년 7월의 태풍 '다나스'에 대하여 VRS-GPS, 드론 측량을 수행하였다. 감지해빈의 전반적인 퇴적물 분포를 파악하기 위해서 입도분석을 하였으며, 자갈해빈의 회복력을 확인하기 위해 주기적으로 감지해빈의 지형측량을 수행하였다. 감지해빈의 자갈퇴적물은 서쪽에서 동쪽으로 갈수록 평균 -6.2Φ에서 -5.4Φ로 세립해지며, 해안선의 수직방향으로는 포말대(swash zone)에서 상대적으로 세립한 구형의 퇴적물(-4.5Φ)이, 범(berm)에서는 상대적으로 조립하고 편평한 퇴적물(-5Φ - -6Φ)이 나타난다. 감지 자갈해빈은 특징적으로 2열의 범을 갖는데, 해빈의 전방에 정상조건에서 형성되는 하부 범(lower berm)과 약 10 m 후방에 상부 범(upper berm)이 존재한다. 태풍 콩레이 내습 후 감지해빈은 육지쪽에 위치한 상부 범에서 약 1.4 m의 침식이 발생하여 상부 범이 사라졌고, 상부 범의 배후지에서는 평균 약 50 cm 침식되어 그 고도가 낮아졌으나, 하부 범에서의 침식은 관찰되지 않았다. 한편 상대적으로 위력이 약한 태풍 다나스의 경우, 내습 직후 감지해빈은 하부 범과 상부 범에서 침식이 발생하여 평균 80 cm 높이의 퇴적물이 침식되었으나, 반면 배후지에서는 50 cm 높이의 퇴적이 확인되었다. 하지만 내습 후 하부 범에서 빠른 속도로 퇴적이 발생하여 내습 약 3일내에 소실되었던 하부 범이 생성되었다. 이러한 결과는 감지 자갈해빈이 태풍에 의한 지형변화가 일시적으로 발생하지만, 이후 정상조건에서 태풍 이전의 지형으로 매우 빠르게 회복됨을 시사한다. 따라서 자갈해빈의 경우 태풍침식에 대한 복원력이 매우 뛰어나다고 평가된다.

Keywords

References

  1. Austin, M.J., Masselink, G., 2006, Observations of morphological change and sediment transport on a steep gravel beach. Marine Geology, 229, 59-77. https://doi.org/10.1016/j.margeo.2006.02.003
  2. Ham, G.U., Kim, J.H., Jang, D.J., 2002, An investigationstudy on the erosion at Hak-Dong gravel beach. Journal of Korean Society of Coastal and Ocean Engineers, 14, 65-75.
  3. Han, M., 2013, Profile change and sedimentary facies of Ulsan Gang-dong Gravel Beach in South Korea. Master thesis, Seoul National University, 116 p.
  4. Han, M., 2018, The study of geomorphological characteristics and tracking sediment movement in gravel beach, Korean Peninsula. Doctor thesis, Seoul National University, 219 p.
  5. Houser, C. and Hamilton, S., 2009, Sensitivity of posthurricane beach and dune recovery to event frequency. Earth Surface Processes and Landforms, 34, 613-628. https://doi.org/10.1002/esp.1730
  6. Lee, Y.G., Shin, H.O., Lee, J.S., Park, I.H., Choi, J.M., 2005, The change of beach sediment composition and geography by typhoon (Naa beach, East Sea). Journal of the Korean Society for Marine Environment & Energy, 8, 122-133.
  7. Lee, Y.Y., Chang, T.S., 2019, Erosion and recovery process in Haeundae beach by the invading typhoon Chaba in 2016. The Journal of the Korean Earth Science Society, 40, 37-45. https://doi.org/10.5467/JKESS.2018.40.1.37
  8. Masselink, G., Hughes, M.G., Knight, J., 2014, Introduction to coastal processes and geomorphology. Second edition. Routledge, New York, 432 p.
  9. Matthews, E.R., 1980, Observations of beach gravel transport, Wellington Harbour entrance, New Zealand. New Zealand Journal of Geology and Geophysics, 23, 209-222. https://doi.org/10.1080/00288306.1980.10424207
  10. Ministry of Oceans and Fisheries (MOF), 2016, Coastal erosion monitoring survey in 2016. 261 p.
  11. Morton, R.A., Paine, J.G., Gilbeaut, J.C., 1994, Stages and durations of post-storm beach recovery, southeastern Texas Coast, U.S.A. Journal of Coastal Research, 10, 884-908.
  12. National Typhoon Center, 2018, Typhoon occurrence statistics (1951-2017). http://typ.kma.go.kr/TYPHOON/statistics/statistics_02_1.jsp (December 23 th 2018)
  13. Orford, J.D., Forbes, D.L., Jennings, S.C., 2002, Organisational controls, typologies and time scales of paraglacial gravel-dominated coastal systems. Geomorphology, 48, 51-85 https://doi.org/10.1016/S0169-555X(02)00175-7
  14. Wang, P., Kirby, J.H., Haber, J.D., Horwitz, M.H., Knorr, P.O., Krock, J.R., 2006, Morphological and sedimentological impacts of hurricane Ivan and immediate poststorm beach recovery along the Northwestern Florida barrierisland coasts. Journal of Coastal Research, 22, 1382-1402. https://doi.org/10.2112/05-0440.1
  15. Yu, F., Switzer, A.D., Lau, A.Y.A., Yeung, H.Y.E., Chik, S.W., Chiu, H.C., Huang, Z., Pile, J., 2013, A comparison of the post-storm recovery of two sandy beaches on Hong Kong Island, southern China. Quaternary international, 304, 163-175. https://doi.org/10.1016/j.quaint.2013.04.002
  16. Zingg, T., 1935, Beitrag zur Schotteranalyse: Schweiz. Mineral. Petrogr. Mitt. 15, 39-140.