The Study of Relationship between Berm Width and Debris Flow at the Slope

사면에서 토석류와 소단폭의 관계성에 관한 연구

  • Kim, Sungduk (Chungbuk National University School of Civil Engineering) ;
  • Oh, Sewook (Kyungpook National University Dept. of Cons. and Disaster Prevention Engineering) ;
  • Lee, Hojin (Chungbuk National University School of Civil Engineering)
  • Published : 2013.11.01

Abstract

The purpose of this study is to estimate the behavior and the mechanism of debris flow at the end of mountain side when a berm was set on the inclined plane. The numerical model was performed by using the Finite Difference Method(FDM) based on the equation for the mass conservation and momentum conservation. In order to measure the behavior of the debris flow, the debris flow of a straight channel slope and the debris flow of channel slope with 3 types of berms were compared. First, the flow discharge and the sediment volume concentration at the downstream of the channel slope, depending on the various berm width and the different inflow discharges at the upstream of the channel were analyzed. The longer the berm width, the flow discharge at the downstream of the channel was decreased and the high flow fluctuation was reduced by a berm. And it means that a berm can effect for the delay of the debris flow. Through Root Mean Square ratio(RMS) comparison, the flow discharge of the channel slope with a berm was lower than that of a straight channel slope. The longer the berm width, for the sediment volume concentration, an inflection point did not show but mild curve. Because the low sediment concentration with water mixture by a berm continuously flow at the downstream end, it will be effect for reducing the disaster caused by debris flow. The results of this study will provide useful information in predicting and preventing disaster caused by the debris flow.

본 연구의 목적은 토석류 발생 가능성이 높은 산지에 소단을 설치하였을 경우 산지 하류에서의 토석류의 거동과 메카니즘을 측정하는 것이다. 수치모델은 질량보존 및 운동량 보존에 관한 방정식에 기초하여 유한차분법을 이용하여 수행되었다. 토석류 거동을 측정하기 위하여 3가지 형태의 소단을 갖는 사면과 직선 사면에서의 토석류 변화를 비교하였다. 우선 하류단에서 소단폭의 길이 변화에 따른 직선 사면과 소단을 갖는 사면에 대한 유량과 토사체적 농도를 조사하였고, 공급유량 변화에 따른 소단을 갖는 사면에서의 유량과 토사체적 농도를 조사하였다. 소단을 갖는 수로에서는 소단폭의 길이가 길어질수록 소단으로 인해 토석류가 저유량 형태로 나타났으며, 고유량의 요동분포의 지속시간이 줄어들었다. 이는 소단이 토석류를 지연시키는 데 효과적인 것을 발견하였다. RMS비 비교 결과 소단을 갖는 사면이 직선 사면보다 유량이 적게 나타난 것을 확인하였다. 토사체적농도의 경우 소단폭의 길이가 길어질수록 변곡점이 나타나지 않고 완만한 형태의 그래프를 나타냈으다. 또한, 저농도의 토사와 물이 혼합되어 하류부로 유하하기 때문에 하류부에서의 토석류에 의한 피해를 저감시키는 데 효과가 있었다. 본 연구의 결과는 토석류 재해 예측 및 다양한 대책을 세우는 데 좋은 정보를 제공할 것이다.

Keywords

References

  1. Calvo, B. and Savi, F.(2009), A real-world application of Monte Carlo procedure for debris flow risk assessment, Computer & Geosciences, Vol. 35, No. 5, pp. 967-977.
  2. Cancelli, A. and Crosta, G.(1994), Hazard and risk assessment in rockfall Prone areas, in : Risk and Reliability in Ground Engineering, Skipp, B. O., eds., Thomas Telford, London, pp. 177-190.
  3. Chen, H., Dadson, S. and Chi, Y. G.(2006), Recent rainfallinduced landslides and debris flow in northern Taiwan, Geomorphology, Vol. 77, No. 1-2, pp. 112-125. https://doi.org/10.1016/j.geomorph.2006.01.002
  4. Crosta, G. B.(2001), Failure and flow development of a complex slide: the 1993 Sesa, landslide, Engineering Geology, Vol. 59, No. 1-2, pp. 173-199.
  5. Dai, F. C., Lee, C. F. and Wang, S. J.(1999), Analysis of rainstorm-induced slide-debris flows on natural terrain of Lantau Island, Hong Kong, Engineering Geology, Vol. 51, No. 4, pp. 279-290. https://doi.org/10.1016/S0013-7952(98)00047-7
  6. Egashira, S. Miyamoto, K. and Itoh, T.(1997), Constitutive equation of debris flow and their applicability, 1st International Conference on Debris-Flow Hazards Mitigation, pp. 340-349.
  7. Ghilardi, P., Natale, L. and Savi, F.(2001), Modeling debris flow propagation and deposition, Physics and Chemistry of the Earth, Vol. 26, No. 9, pp. 651-656.
  8. Glade, T.(2005), Linking debris-flow hazard assessments with geomorphology, Geomorphology, Vol. 66, No. 1-4, pp. 189-213. https://doi.org/10.1016/j.geomorph.2004.09.023
  9. Gotoh, H., Harada, E., Sakai, T. and Goda, K.(2006), Numerical simulation of blocking process of grid-type dam by debris flow, Annual Journal of Hydraulic Engineering, JSCE, Vol. 50, pp. 739-744 (in Japanese). https://doi.org/10.2208/prohe.50.739
  10. Iverson, R. M.(1997), The physics of debris flows: in review of geophysics, 35, 3, August 1997, Published by American Geophysical Union, Paper #97RG00426, pp. 245-296.
  11. Iverson, R. M., Reid, M. E. and LaHusen, R. G.(1997), Debrisflow mobilization from landslides, Annul Review of Earth and Planetary Sciences, Vol. 25, pp. 85-138. https://doi.org/10.1146/annurev.earth.25.1.85
  12. Iverson, R. M., Reid, M. E., Iverson, N. R., LaHusen, R. G., Logan, M., Mann, J. E. and Brien, D. L.(2000), Acute sensitivity of landslide raters to initial soil porosity, Science, Vol. 290, pp. 513-516. https://doi.org/10.1126/science.290.5491.513
  13. Iverson, R. M., Reid, M. E., Logan, M., LaHusen, R. G., Godt, J. W. and Griswold, J. P.(2011), Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment, Nature Geosciences, Vol. 4, Feb., pp. 116-121. https://doi.org/10.1038/ngeo1040
  14. Kim, K. H., Lee, D. H., Kim, D. H. and Lee, S. H.(2008), A Study on model tests for debris flow characteristics, Journal of the Korean Geoenvironmental Society, Vol. 9, No. 5, pp. 83-89 (in Korean).
  15. Kim, S. D., Yoon, I. R., Oh, S. O., Lee, H, J. and Bae, W. S.(2012), Numerical simulation for behavior of debris flow according to the variances of slope angle, Journal of the Korean Geoenvironmental Society, Vol. 13, No. 6, pp. 59-66 (in Korean).
  16. Kim, Y. S.(2012), Lesson from Mt. Umyeon landslide, Geoenviromental engineering, Vol. 13, No. 2, pp. 24-29 (in Korean).
  17. Li, Y., Kang, Z. C., Yue, Z. Q., Tham, L. G., Lee, C. F. and Law, K. T.(2003), Surge waves of debris flow in Jiangjia Gully, Kunming, China, Proceedings of International Conference on Fast Slope Movements: Prediction and Prevention for Risk Mitigation, Naples, Italy, Vol. 1, pp. 303-307.
  18. Luzi, L., Pergalani, F. and Terlien, M. T. J.(2000), Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems, Engineering Geology, Vol. 58, No. 3-4, pp. 313-336. https://doi.org/10.1016/S0013-7952(00)00041-7
  19. Malet, J. P., Laigle, D., Remaitre, A. and Maquaire, O. (2005), Triggering conditions and mobility of debris flows associated to complex earth flows, Geomorphology, Vol. 66, N0. 1-4, pp. 215-235. https://doi.org/10.1016/j.geomorph.2004.09.014
  20. Miyazawa, N., Tanishima, T., Sunada, K. and Oishi, S.(2003), Debris-flow capturing effect of grid type steel made sabo dam using 3D distinct element method, Proceedings of the Third Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Switzerland, Rotterdam, pp. 527-538.
  21. O'Brien, J. S., Julien, P. Y. and Fullerton, W. T.(1993), Two-dimensional water flood and mudflow simulation, Journal of Hydraulic Engineering, Vol. 119, No. 2, pp. 244-266. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
  22. Osti, R. and Egashira, S.(2008), Method to improve the mitigative effectiveness of a series of check dams against debris flows, Hydrological Processes, Wiley InterScience, Vol. 22, No. 26, pp. 4986-4996. https://doi.org/10.1002/hyp.7118
  23. Paik, J. C. and Park, S. D.(2009), Numerical modeling and field measurement of 1D debris flows, Proceeding of the Korean Society of Civil Engineers, pp. 695-698 (in Korean).
  24. Potts, D. M., Addenbrooke, T. I. and Day, R. A.(1993), The use of soil berms for temporary support of retaining walls, Proc. of the Conf. Retaining Structures, Cambridge, London, pp. 440-447.
  25. Rhee, J. H., Lee, J. Y., Kim, S. H., Koo, H. B., Back, Y. B. and Bae, G. J.(2003), A study on the effective evaluation of slope berm construction, Proc. of the Conf. KSCE, pp. 3881-3886 (in Korean).
  26. Ryu, S. H., Lee, Y. S. and Jeoung, J. H.(2011), Result of comparison between debris flow model experiment and numerical model, Proceedings of the Korean Geoenvironmental Society Fall Conference, pp. 77-81 (in Korean).
  27. Satofuka, Y. and Mizuyama, T.(2005), Numerical simulation on a debris flow in a mountainous river with a Sabo dam, Journal of the Japan Society of Erosion Control Engineering, Vol. 58, No. 1, pp. 14-19 (in Japanese).
  28. Savage, S. B. and Hutter, K.(1991), The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis, Acta Mechanica, Vol. 86, pp. 201-223. https://doi.org/10.1007/BF01175958
  29. Shrestha, B. B.(2004), Numerical modeling on debris flows and its structural counter measure by Sabo dam, Master's Thesis, Institute of Engineering, Tribhuvan University, Nepal.
  30. Takahashi, T.(2007), Debris flow : mechanics, Prediction and Countermeasures, Taylor & Francis/Balkema, Tokyo, pp. 1-448.
  31. Takahashi, T., Nakagawa, H., Harada, T. and Yamashiki, Y. (1992), Routing debris flows with particle segregation, Journal of Hydraulic Engineering, Vol. 118, No. 11, pp. 1490-1507. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:11(1490)