• Title/Summary/Keyword: battery charge rate

Search Result 185, Processing Time 0.023 seconds

A Review on Electrochemical Model for Predicting the Performance of Lithium Secondary Battery (리튬이차전지 성능 모사를 위한 전기화학적 모델링)

  • Yang, Seungwon;Kim, Nayeon;Kim, Eunsae;Lim, Minhong;Park, Joonam;Song, Jihun;Park, Sunho;Appiah, Williams Agyei;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.43-52
    • /
    • 2019
  • As the application area of lithium secondary batteries becomes wider, performance characterization becomes difficult as well as diverse. To address this issue, battery manufacturers have to evaluate many batteries for a longer period, recruit many researchers and continuously introduce expensive equipment. Simulation techniques based on battery modeling are being introduced to solve such difficulties. Various lithium secondary battery modeling techniques have been reported so far and optimal techniques have been selected and utilized according to their purpose. In this review, the electrochemical modeling based on the Newman model is described in detail. Particularly, we will explain the physical meaning of each equation included in the model; the Butler-Volmer equation, which represents the rate of electrode reaction, the material and charge balance equations for each phase (solid and liquid), and the energy balance. Moreover, simple modeling processes and results based on COMSOL Multiphysics 5.3a will be provided and discussed.

Effect of Pre-Cycling Rate on the Passivating Ability of Surface Films on Li4Ti5O12 Electrodes

  • Jung, Jiwon;Hah, Hoe Jin;Lee, Tae jin;Lee, Jae Gil;Lee, Jeong Beom;Kim, Jongjung;Soon, Jiyong;Ryu, Ji Heon;Kim, Jae Jeong;Oh, Seung M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.15-24
    • /
    • 2017
  • A comparative study was performed on the passivating abilities of surface films generated on lithium titanate (LTO; $Li_4Ti_5O_{12}$) electrodes during pre-cycling at two different rates. The surface film deposited at a faster pre-cycling rate (i.e., 0.5 C) is irregularly shaped and unevenly covers the LTO electrode. Owing to the incomplete coverage of the protective film, this LTO electrode exhibits poor passivating ability. Additional electrolyte decomposition and concomitant film deposition occur during subsequent charge/discharge cycles. As a result of the thick surface film, severe cell polarization occurs and eventually causes cell failure. However, pre-cycling the Li/LTO cell at a slower rate (0.1 C) improves cell polarization and capacity retention; this occurs because the surface film uniformly covers the LTO electrode and provides strong passivation. Accordingly, there is no significant film deposition during subsequent charge/discharge cycling. Additionally, self-discharge is reduced during high-temperature storage.

Separator Effect on the Cell Failure of Lithium Secondary Battery using Lithium Metal Electrode (리튬금속 전극을 이용한 리튬이차전지의 내부단락에 대한 분리막의 영향)

  • Kim, Ju-Seok;Bae, Sang-Ho;Hwang, Min-Ji;Heo, Min-Yeong;Doh, Chil-Hoon
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.171-175
    • /
    • 2011
  • Lithium secondary batteries using lithium metal count electrode are easy to use and to analyze the specific characteristics of working electrode. Nevertheless, during the charge operation internal electrical short circuit could be caused by the dendritic growth of lithium. The cell failure by the short circuit depends on the condition of separator such as constitutive material and thickness. To prevent the cell failure caused by the dendritic growth of lithium, the electrochemical properties of the cell of lithium metal count electrode were evaluated for four different kinds of separator. Among the tested separators, GMF (glass micro-fiber filter, $300{\mu}m$) was the most promising one because it could effectively prevent the cell failure during the charge. The cell using GMF separator had relatively low impedance. Generally the cell using thicker separator than $50{\mu}m$ could effectively avoid the cell failure by internal short circuit and had the good cycleability. The highest rate capability by the signature method was acquired in the case of GMF separator.

리튬 2차 전지의 1차원 열적 특성을 고려한 지능형 용량예측

  • Lee, Jeong-Su;Ho, Bin;Kim, Gwang-Seon;Im, Geun-Uk;Jo, Jang-Gun;Jo, Hyeon-Chan
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.244-249
    • /
    • 2007
  • In this paper, in order to get the characteristics of the lithium secondary cell, such as cycle life, charge and discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc, we build a mathematical model of battery. In this one-dimensional model, Seven governing equations are made to solve seven variables $c,\;c_s,\;{\Phi}_1,\;{\Phi}_2,\;i_2,\;j\;and\;T$. The mathematical model parameters used in this model have been adjusted according to the experimental data measured in our lab. The connecting research of this study is to get an accurate estimate of the capacity of battery through comparison of results from simulation and fuzzy logic system. So the result data from this study is reorganized to fit the fuzzy logic algorithm.

  • PDF

First-principles Study of the Efficient Li-ion Insertion into TiO2 anatase Nanolayer for High Performance Li-ion Battery

  • Shin, Dong Jae;Kim, Yong Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.305-307
    • /
    • 2016
  • We calculated Li ion migration energy barrier, applying three different models on Li ion insertion into $TiO_2$ nanolayers to elucidate the previously reported high rate of charge-discharge. With the existence of additional Li ion on the surface of $TiO_2$ structure, spontaneous insertion of Li ion into the second layer from the first layer was observed. Using this result, we showed the intrinsic property of $TiO_2$ structure and it has a contribution to the reported performance. In the end, we give a suggestion on the fabrication of $TiO_2-Graphene$ hybrid structure for Li ion battery electrode.

  • PDF

Electrochemical Characteristics of Ru Added Li4Ti5O12 as an Anode Material (Ru를 첨가한 음극활물질 Li4Ti5O12의 전기화학적 특성)

  • Cho, Woo-Ram;Na, Byung-Ki
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.433-438
    • /
    • 2014
  • There is an increasing interest in the development of rechargeable batteries suitable for use in both hybrid electric vehicles and energy storage systems that require higher charge & discharge rates, bigger battery sizes and increased safety of the batteries. Spinel-type lithium titanium oxide ($Li_4Ti_5O_{12}$) as a potential anode for lithium ion batteries has many advantages. It is a zero-strain materials and it experiences no structural change during the charge/discharge precess. Thus, it has long cycle life due to its structural integrity. It also offers a stable operation voltage of approximately 1.55 V versus $Li^+/Li$, above the reduction potential of most organic electrolyte. In this study, Ru added $Li_4Ti_5O_{12}$ composites were synthesized by solid state process. The characteristics of active material were investigated with TGA-DTA, XRD, SEM and charge/discharge test. The capacity was reduced when Ru was added, however, the polarization decreased. The capacity rate of $Li_4Ti_5O_{12}$ with Ru (3%, 4%) addition was reduced during the charge/discharge precess with 10 C-rate as a high current density.

Charge/discharge characteristics of $LiCoO_2$ thin film prepared by electron-beam evaporation with deposition rate and annealing temperatures (Electron-beam 증발법으로부터 증착속도 및 열처리 온도에 따른 $LiCoO_2$ 박막의 충방전 특성)

  • Nam S. C.;Cho W. I.;Cho B. W.;Yun K. S.;Chun H. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.46-49
    • /
    • 1999
  • Lithium cobalt oxide cathode for thin-film rechargeable lithium batteries were fablicated by electron-beam evaporation. Annealed lithium cobalt oxide, which was deposited on to stainless steel substrate, showed well-developed (003) planes of the hexagonal structure and potential plateau at $\~3.9 V$. Lithium cobalt oxide thin films had the stoichiometric Li/co ratio at high deposition rates and exhibited high discharge capacity at $15{\AA}/s$. As the annealing temperature increased, discharge capacity increased with maximum value at $700^{\circ}C$, but showed low capacity as a result of reaction with substrate above $700^{\circ}C$. Unuiformity of the lithium and cobalt in the depth profile gave initial capacity loss with charge/discharge performance.

Improvement on Electrochemical Performances of Lithium-Ion Batteries Using Binary Conductive Agents (이성분계 전도성물질을 이용한 리튬이온전지의 전기화학적 성능 향상에 관한 연구)

  • Lee, Chang Woo;Lee, Mi Sook;Kim, Hyun Soo;Moon, Seong In
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.689-692
    • /
    • 2005
  • In order to improve the electrochemical performances of Li-ion batteries when spinel $LiMn_2O_4$ is employed as a cathode active material, binary conductive agents were prepared using two different particle-sized carbons like Super P Black and $Vulcan^{(R)}$ XC-72R. The electrochemical performances of the $LiMn_2O_4$ cell system using binary conductive agents were evaluated in terms of specific charge and discharge capacities and cycle life. The cell with binary conductive agent in the 3:7 weight ratios of Super P Black and $Vulcan^{(R)}$ XC-72R showed better electrochemical performances due to the proper combination of ionic diffusion rate and electric contact.

A Study on The Effects of Three Different Carbon Catalysts on Performance of Vanadium Redox Flow Battery (세가지 다른 형태의 탄소촉매 적용에 따른 바나듐레독스흐름전지 성능 변화에 관한 연구)

  • Chu, Cheounho;Jeong, Sanghyun;Jeong, Jooyoung;Chun, Seung-Kyu;Lee, Jinwoo;Kwon, Yongchai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, we carry out a study on how to improve performance of vanadium redox flow battery (VRFB) through promoting reaction rate of rate determining vanadium reaction ($[VO]^{2+}/[VO_2]^+$). In order to do that, three different carbons like Vulcan (XC-72), CMK3 and MSU-F-C are adopted as the catalysts, while their catalytic activity and reaction reversibility are evaluated using half-cell tests. Their topological images are also measured by TEM. For estimation of the VRFB performance, multiple charge-discharge curves of VRFBs including the catalysts are measured by single cell tests. As a result of that, MSU-F-C shows relatively excellent catalytic activity and reaction reversibility as well as large surface area compared to those of Vulcan (XC-72) and CMK3. Also, in terms of the performance of VRFBs including the catalysts, VRFB including MSU-F-C indicates (i) low charging/discharging overpotentials and low internal resistance, (ii) high charge/discharge capacities and (iii) high energy efficiency. These VRFB performance data are well agreed with results on catalytic activity and reaction reversibility. The reason that MSU-F-C induces superior VRFB performances is attributed to (i) its large surface area and (ii) its hydrophilic surface functional groups that mainly consist of hydroxyl bonds that are supposed to play active surface site role for facilitaing $[VO]^{2+}/[VO_2]^+$ redox reaction. Based on the above results, it is found that adoption of MSU-F-C as catalyst for VRFB results in improvement in VRFB performance by promoting the languid $[VO]^{2+}/[VO_2]^+$ redox reaction.

Effect of Mo-doped LiFePO4 Positive Electrode Material for Lithium Batteries

  • Oh, Seung-Min;Sun, Yang-Kook
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.172-177
    • /
    • 2012
  • Mo-doped $LiFePO_4$ was synthesized via co-precipitation method using sucrose as the carbon source. Structure, surface morphology, and the electrochemical properties of the synthesized olivine compounds were investigated using Rietveld refinement of X-ray diffraction data (XRD), scanning electron microscopy (SEM), and electrochemical charge-ischarge tests. Spherical morphology with the particle size of ${\sim}8{\mu}m$ authenticated the enhanced tap density and volumetric energy density of the synthesized materials. Charge-discharge behavior of $LiFePO_4$ and Mo-doped $LiFePO_4$ cells demonstrated a specific capacity of 130 and 145 mAh $g^{-1}$, respectively. Mo-doped $LiFePO_4$ cells exhibited an excellent discharge capacity at 96 mAh $g^{-1}$ at 7 C-rate.