Improvement on Electrochemical Performances of Lithium-Ion Batteries Using Binary Conductive Agents

이성분계 전도성물질을 이용한 리튬이온전지의 전기화학적 성능 향상에 관한 연구

  • Lee, Chang Woo (Battery Research Group, Korea Electrotechnology Research Institute (KERI)) ;
  • Lee, Mi Sook (Battery Research Group, Korea Electrotechnology Research Institute (KERI)) ;
  • Kim, Hyun Soo (Battery Research Group, Korea Electrotechnology Research Institute (KERI)) ;
  • Moon, Seong In (Battery Research Group, Korea Electrotechnology Research Institute (KERI))
  • 이창우 (한국전기연구원 재료응용연구단 전지연구그룹) ;
  • 이미숙 (한국전기연구원 재료응용연구단 전지연구그룹) ;
  • 김현수 (한국전기연구원 재료응용연구단 전지연구그룹) ;
  • 문성인 (한국전기연구원 재료응용연구단 전지연구그룹)
  • Received : 2005.06.24
  • Accepted : 2005.07.29
  • Published : 2005.10.10

Abstract

In order to improve the electrochemical performances of Li-ion batteries when spinel $LiMn_2O_4$ is employed as a cathode active material, binary conductive agents were prepared using two different particle-sized carbons like Super P Black and $Vulcan^{(R)}$ XC-72R. The electrochemical performances of the $LiMn_2O_4$ cell system using binary conductive agents were evaluated in terms of specific charge and discharge capacities and cycle life. The cell with binary conductive agent in the 3:7 weight ratios of Super P Black and $Vulcan^{(R)}$ XC-72R showed better electrochemical performances due to the proper combination of ionic diffusion rate and electric contact.

스피넬계 $LiMn_2O_4$를 양극 활물질로 사용하는 리튬이온전지의 전기화학적 성능을 향상시키기 위하여 서로 상이한 입자크기를 가지는 Super P Black 및 $Vulcan^{(R)}$ XC-72R을 사용한 이성분계 전도성물질을 제조하였다. 이렇게 이성분계 전도성물질을 사용하여 제조되어진 $LiMn_2O_4$ 전지 시스템은 충 방전 동안의 비용량 및 사이클 수명의 관점에서 특성 평가되었다. 결과적으로 Super P Black 및 $Vulcan^{(R)}$ XC-72R이 3:7의 비율로 구성되어진 이성분계 전도성물질을 사용하였을 때의 전지가 우수한 전기화학적 성능을 보여주었으며 이는 적절한 조합의 ionic diffusion rate와 electric contact에 의해 제어되어졌기 때문인 것으로 여겨진다.

Keywords

Acknowledgement

Supported by : 차세대전지 성장동력 사업단

References

  1. G. B. Appetecchi and B. Scrosati, Electrochim. Acta, 43, 1105 (1998) https://doi.org/10.1016/S0013-4686(97)10117-7
  2. K. M. Abraham, D. M. Pasquariello, and E. M. Willstaedt, J. Electrochem. Soc., 145, 482 (1998) https://doi.org/10.1149/1.1838289
  3. T. Ohzuku and A. Ueda, J. Electrochem. Soc., 141, 2972 (1994) https://doi.org/10.1149/1.2059267
  4. X. Sun, H. S. Lee, X. Q. Yang, and J. McBreen, Electrochem. Solid-state Lett., 4, A184 (2001) https://doi.org/10.1149/1.1405036
  5. A. M. Kannan and A. Manthiram, Electrochem. Solid-State Lett., 5, A 167 (2002) https://doi.org/10.1149/1.1482198
  6. H. Yamane, M. Saitoh, M. Sano, M. Fujita, M. Sakata, M. Takada, E. Nishibiri, and N. Tanaka, J. Electrochem. Soc., 149, A1514 (2002) https://doi.org/10.1149/1.1515278
  7. S. E. Cheon, C. W. Kwon, D. B. Kim, S. J. Hong, H. T. Kim, and S. W. Kim, Electrochimica Acta, 46, 599 (2000) https://doi.org/10.1016/S0013-4686(00)00626-5
  8. Jin K. Hong, Jong H. Lee, and Seung M. Oh, J. Power Sources, 111, 90 (2002) https://doi.org/10.1016/S0378-7753(02)00264-1
  9. K. Kinoshita, Carbon: Electrochemical and Physical Properties, Chap. 7, Wiley, NY (1998)
  10. J. Lahaye, M. J. Wtterwald, and J. Messit, J. Apple. Electrochem., 14, 117 (1984) https://doi.org/10.1007/BF00611268
  11. M. Kadowaki, M. Tnoki, T. Toyokazu, and A. Oishi, Proceedings of the 42nd Battery Symposium, 1A01, Japan, 86 (2001)
  12. J. Fan and P. S. Fedkiw, J. Power Sources, 72, 165 (1998) https://doi.org/10.1016/S0378-7753(97)02708-0
  13. S.-C. Park, Y.-S. Han, Y.-S. Kang, P. S. Lee, S. Ahn, H.-M. Lee, and J.-Y. Lee, J. Electrochem. Soc., 148, A680 (2001) https://doi.org/10.1149/1.1373657