Effect of Protonic Acids on the Reaction Rate in Chemical Polymerization of Polyaniline

폴리아닐린의 화학적 중합 시 반응속도에 미치는 양성자산의 영향

  • Hong, Jang-Hoo (Department of Fine Chemistry, Seoul National University of Technology) ;
  • Jang, Beom Soon (Department of Fine Chemistry, Seoul National University of Technology)
  • 홍장후 (서울산업대학교 정밀화학과) ;
  • 장범순 (서울산업대학교 정밀화학과)
  • Received : 2005.06.09
  • Accepted : 2005.07.25
  • Published : 2005.10.10

Abstract

Aniline was polymerized in various protonic acid (HF, HC1, HBr, HI, $H_2SO_4$) aqueous solutions with different acidity. During the reaction, the dimer formation and the reaction rate were examined as functions of acidity (pH) and the size of counter ions. Open-circuit potential measurements were carried out to investigate the effect of protonic acid on the reaction rate. The results showed that polymerization rate in HF aqueous solution was very slow and polymerization did not occur in HI aqueous solution. These results were explained in terms of acidity and power of oxidation. The ratio of formation of dimers varied with the kind of protonic acid, and the results were explained with the nucleophilicity, solvation effect, and mobility of counter ions.

산도가 각기 다른 양성자산(HF, HCI, HBr, HI, $H_2SO_4$)의 수용액내에서 아닐린을 중합하였다. 이때 산도(pH)와 상대이온(counter ion)의 반응성에 따른 반응속도에 관하여 조사하였다. 반응속도에 대한 양성자산의 영향을 조사하기 위하여, open-circuit potential을 측정하였다. 그 결과 HF 수용액내에서 중합속도가 가장 느리게 나타났고, HI 수용액내에서는 중합반응이 진행되지 않았으며, 이러한 결과들을 산도(pH)와 산화력과의 관계로 설명하였다. 양성자산의 종류에 따라 dimer들의 생성비율도 각기 다르게 나타났으며, 이러한 결과들을 상대이온(음이온)의 친핵성도 (nucleophilicity), 용매화효과 및 이동도의 영향으로 설명하였다.

Keywords

Acknowledgement

Supported by : 서울산업대학교

References

  1. A. G. Macdiarmid and A. J. Epstein, J. Chem. Soc. Faraday. Disc., 88, 317 (1989) https://doi.org/10.1039/dc9898800317
  2. T. Vikki, L. O. Pietila, H. Osterholm, L. Ahjopalo, A. Takala, A. Toivo, K. Levon, and O. Ikkala, Macromolecules, 29, 2945 (1996) https://doi.org/10.1021/ma951555v
  3. C. L. Gettinger, A. J. Heeger, D. J. Pine, and Y. Cao, Synth. Met., 74, 81 (1995) https://doi.org/10.1016/0379-6779(95)80041-7
  4. C. Y. Yang, A. J. Heeger, and Y. Cao, Synth. Met., 79, 27 (1996) https://doi.org/10.1016/0379-6779(96)80126-3
  5. J. Yue and A. J. Epstein, J. Am. Chem. Soc., 112, 2800 (1990) https://doi.org/10.1021/ja00163a051
  6. J. M. Ginder and A. J. Epstein, Physical Review E, 41, 10674 (1990)
  7. J. Joo and A. J. Epstein, Appl. phys. Lett., 65, 2278 (1994) https://doi.org/10.1063/1.112717
  8. A. F. Diaz and J. A. Bargon, J. Electroanal. Chem., 111, 112 (1980)
  9. A. G. MacDiarmid and A. J. Epstein, Synth. Met., 69, 85 (1994)
  10. K. Tzou and R. V. Gregory, Synth. Met., 47, 267 (1992) https://doi.org/10.1016/0379-6779(92)90367-R
  11. F. Lux, Polymer, 35, 2915 (1994) https://doi.org/10.1016/0032-3861(94)90402-2
  12. M. Gustavo, M. Llusa, C. Maria, and C. Barbero, Polymer, 38, 5247 (1997) https://doi.org/10.1016/S0032-3861(97)82751-6
  13. E. T. Kang, K. G. Neoh, K. L. Tan, and H. K. Wong, Synth. Met., 48, 231 (1992) https://doi.org/10.1016/0379-6779(92)90064-P
  14. Y. Wei, X. Tang, Y. Sun, and W. W. Focke, J. Polym. Sci., part A: Polym. Chem., 27, 2385 (1989) https://doi.org/10.1002/pola.1989.080270720
  15. M. T. Gill, S. E. Chapman, C. L. DeArmitt, F. L. Baines, C. M. Dadswell, J. G. Stamper, G. A. Lawless, N. C. Billingham, and S. P. Armes, Synth. Met., 93, 227 (1998) https://doi.org/10.1016/S0379-6779(98)00016-2
  16. Y. Wei, K. H. Hsueh, and G. W. Jang, Polymer, 35, 3572 (1994) https://doi.org/10.1016/0032-3861(94)90927-X
  17. S. K. Manohar, A. G. Macdiannid, and A. J. Epstein, Synth. Met., 41, 711 (1991) https://doi.org/10.1016/0379-6779(91)91165-7