DOI QR코드

DOI QR Code

Effect of Pre-Cycling Rate on the Passivating Ability of Surface Films on Li4Ti5O12 Electrodes

  • Jung, Jiwon (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Hah, Hoe Jin (Battery R&D, LG Chem.) ;
  • Lee, Tae jin (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Lee, Jae Gil (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Lee, Jeong Beom (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Kim, Jongjung (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Soon, Jiyong (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University) ;
  • Kim, Jae Jeong (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Oh, Seung M. (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University)
  • Received : 2016.11.15
  • Accepted : 2016.12.20
  • Published : 2017.03.31

Abstract

A comparative study was performed on the passivating abilities of surface films generated on lithium titanate (LTO; $Li_4Ti_5O_{12}$) electrodes during pre-cycling at two different rates. The surface film deposited at a faster pre-cycling rate (i.e., 0.5 C) is irregularly shaped and unevenly covers the LTO electrode. Owing to the incomplete coverage of the protective film, this LTO electrode exhibits poor passivating ability. Additional electrolyte decomposition and concomitant film deposition occur during subsequent charge/discharge cycles. As a result of the thick surface film, severe cell polarization occurs and eventually causes cell failure. However, pre-cycling the Li/LTO cell at a slower rate (0.1 C) improves cell polarization and capacity retention; this occurs because the surface film uniformly covers the LTO electrode and provides strong passivation. Accordingly, there is no significant film deposition during subsequent charge/discharge cycling. Additionally, self-discharge is reduced during high-temperature storage.

Keywords

References

  1. H. Azuma, H. Imoto, S.I. Yamada, K. Sekai, J. Power Sources, 1999, 81, 1-7.
  2. E. Buiel, J.R. Dahn, Electrochim. Acta, 1999, 45, 121-130. https://doi.org/10.1016/S0013-4686(99)00198-X
  3. M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Carbon, 2000, 38(2), 183-197. https://doi.org/10.1016/S0008-6223(99)00141-4
  4. A.M. Andersson, A. Henningson, H. Siegbahn, U. Jansson, K. Edstrom, J. Power Sources, 2003, 119, 522-527.
  5. K. Edström, M. Herstedt, D.P. Abraham, J. Power Sources, 2006, 153(2), 380-384. https://doi.org/10.1016/j.jpowsour.2005.05.062
  6. H. Bryngelsson, M. Stjerndahl, T. Gustafsson, K. Edstrom, J. Power Sources, 2007, 174(2), 970-975. https://doi.org/10.1016/j.jpowsour.2007.06.050
  7. P. Verma, P. Maire, P. Novak, Electrochim. Acta, 2010, 55(22), 6332-6341. https://doi.org/10.1016/j.electacta.2010.05.072
  8. V. Eshkenazi, E. Peled, L. Burstein, D. Golodnitsky, Solid State Ion., 2004, 170(1), 83-91. https://doi.org/10.1016/S0167-2738(03)00107-3
  9. E. Peled, D. Golodnitsky, A. Ulus, V. Yufit, Electrochim. Acta, 2004, 50(2), 391-395. https://doi.org/10.1016/j.electacta.2004.01.130
  10. P. Novak, J. Ufheil, H. Buqa, F. Krumeich, M.E. Spahr, D. Goers, H. Wilhelm, J. Dentzer, R. Gadiou, C. Vix-Guterl, J. Power Sources, 2007, 174(2), 1082-1085. https://doi.org/10.1016/j.jpowsour.2007.06.036
  11. Ilya A. Shkrob, Ye Zhu, Timothy W. Marin, Daniel Abraham, J. Phys. Chem. C, 2013, 117(38), 19255-19269. https://doi.org/10.1021/jp406274e
  12. E. Peled, J. Electrochem Soc., 1979, 126(12), 2047-2051. https://doi.org/10.1149/1.2128859
  13. E. Peled, D. Golodnitsky, G. Ardel, J. Electrochem. Soc., 1997, 144(8), L208-L210. https://doi.org/10.1149/1.1837858
  14. H. Park, T. Yoon, Y. Kim, J.G. Lee, J.H. Ryu, J.J. Kim, S.M. Oh, J. Electrochem. Soc., 2015, 162(6), A892-A896. https://doi.org/10.1149/2.0431506jes
  15. J. K. Park, Principles and Applications of Lithium Secondary Batteries, Wiley, 2012.
  16. I. Belharouak, G.M. Koenig, K. Amine, J. Power Sources, 2011, 196(23), 10344-10350. https://doi.org/10.1016/j.jpowsour.2011.08.079
  17. K. Wu, J. Yang, Y. Zhang, C. Wang, D. Wang, J. Appl. Electrochem., 2012, 42(12), 989-995. https://doi.org/10.1007/s10800-012-0442-0
  18. N. Takami, H. Inagaki, Y. Tatebayashi, H. Saruwatari, K. Honda, S. Egusa, J. Power Sources, 2013, 244, 469-475. https://doi.org/10.1016/j.jpowsour.2012.11.055
  19. J. Jung, J. Jang, O. Chae, T. Yoon, J.H. Ryu, S.M. Oh, J. Power Sources, 2015, 287, 359-362. https://doi.org/10.1016/j.jpowsour.2015.04.006
  20. E. Ferg, R. Gummow, A. De Kock, M. Thackeray, J. Electrochem. Soc., 1994, 141(11), L147-L150. https://doi.org/10.1149/1.2059324
  21. T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc., 1995, 142(5), 1431-1435. https://doi.org/10.1149/1.2048592
  22. L. Aldon, P. Kubiak, M. Womes, J.C. Jumas, J. Olivier-Fourcade, J.L. Tirado, J.I. Corredor, C. Perez Vicente, Chem. Mater., 2004, 16(26), 5721-5725. https://doi.org/10.1021/cm0488837
  23. I. Belharouak, G.M. Koenig, T. Tan, H. Yumoto, N. Ota, K. Amine, J. Electrochem. Soc., 2012, 159(8), A1165-A1170. https://doi.org/10.1149/2.013208jes
  24. Y.B. He, B. Li, M. Liu, C. Zhang, W. Lv, C. Yang, J. Li, H. Du, B. Zhang, Q.H. Yang, J.K. Kim, F.Y. Kang, Sci. Rep., 2012, 2, 913. https://doi.org/10.1038/srep00913
  25. M. Kitta, T. Akita, Y. Maeda, M. Kohyama, Langmuir, 2012, 28(33), 12384-12392. https://doi.org/10.1021/la301946h
  26. Y.-B. He, M. Liu, Z.-D. Huang, B. Zhang, Y. Yu, B. Li, F. Kang, J.-K. Kim, J. Power Sources, 2013, 239, 269-276. https://doi.org/10.1016/j.jpowsour.2013.03.141
  27. M.-S. Song, R.-H. Kim, S.-W. Baek, K.-S. Lee, K. Park, A. Benayad, J. Mater. Chem. A, 2014, 2(3), 631-636. https://doi.org/10.1039/C3TA12728A
  28. M. Kitta, T. Akita, M. Kohyama, J. Electrochem. Soc., 2015, 162(7), A1272-A1275. https://doi.org/10.1149/2.0741507jes
  29. H.J. Mathieu, Auger Electron Spectroscopy, in: Surface Analysis The Principal Techniques, John Wiley & Sons, Ltd, 2009.
  30. M. Wohlfahrt-Mehrens, C. Vogler, J. Garche, J. Power Sources, 2004, 127(1), 58-64. https://doi.org/10.1016/j.jpowsour.2003.09.034
  31. M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev, R.J. Staniewicz, J. Power Sources, 2005, 146(1), 90-96. https://doi.org/10.1016/j.jpowsour.2005.03.172
  32. T. Yoon, S. Park, J. Mun, J.H. Ryu, W. Choi, Y.-S. Kang, J.-H. Park, S.M. Oh, J. Power Sources, 2012, 215, 312-316. https://doi.org/10.1016/j.jpowsour.2012.04.103
  33. R. Dedryvère, L. Gireaud, S. Grugeon, S. Laruelle, J.M. Tarascon, D. Gonbeau, J. Phys. Chem. B, 2005, 109(33), 15868-15875. https://doi.org/10.1021/jp051626k
  34. L. El Ouatani, R. Dedryvère, J.B. Ledeuil, C. Siret, P. Biensan, J. Desbrières, D. Gonbeau, J. Power Sources, 2009, 189(1), 72-80. https://doi.org/10.1016/j.jpowsour.2008.11.031
  35. S. Park, J. H. Ryu, and S. M. Oh, J. Korean Electrochem. Soc., 2012, 15(1), 19-26. https://doi.org/10.5229/JKES.2012.15.1.019