• Title/Summary/Keyword: band power

Search Result 2,656, Processing Time 0.029 seconds

Digital Predistortion for Closely Spaced Dual-Band Signals (근접한 이중대역 신호에 대한 디지털 전치왜곡 기법)

  • Jeong, Eui-Rim;Oh, Joo-Hyun;Kim, Do-Kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1684-1690
    • /
    • 2018
  • A new digital pre-distortion (DPD) technique for closely spaced dual-band signals is proposed. In the system under consideration, dual-band signals are amplified by a single broadband power amplifier (PA) at a transmitter. The PA output is distorted by cross-modulation between the two bands as well as their own inter-modulation distortion. Especially, if the two bands are placed in close proximity to each other, their spectral regrowths due to in-band intermodulation overlap with each other, which degrades DPD performance. To solve this problem, we propose a new DPD technique where the dual-band PA characteristics are estimated first, and then the DPD parameters are obtained from the estimated PA characteristics. By finding the DPD parameters through two steps, pre-distortion can perform well for the closely-spaced dual band signals. The proposed technique is verified through computer simulation. Simulation result shows that the proposed method performs better than the conventional method for closely-spaced dual band signals.

A Wideband Inductorless LNA for Inter-band and Intra-band Carrier Aggregation in LTE-Advanced and 5G

  • Gyaang, Raymond;Lee, Dong-Ho;Kim, Jusung
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.917-924
    • /
    • 2019
  • This paper presents a wideband low noise amplifier (LNA) that is suitable for LTE-Advanced and 5G communication standards employing carrier aggregation (CA). The proposed LNA encompasses a common input stage and a dual output second stage with a buffer at each distinct output. This architecture is targeted to operate in both intra-band (contiguous and non-contiguous) and inter-band CA. In the proposed design, the input and second stages employ a gm enhancement with resistive feedback technique to achieve self-biasing, enhanced gain, wide bandwidth as well as reduced noise figure of the proposed LNA. An up/down power controller controls the single input single out (SISO) and single input multiple outputs (SIMO) modes of operation for inter-band and intra-band operations. The proposed LNA is designed with a 45nm CMOS technology. For SISO mode of operation, the LNA operates from 0.52GHz to 4.29GHz with a maximum power gain of 17.77dB, 2.88dB minimum noise figure and input (output) matching performance better than -10dB. For SIMO mode of operation, the proposed LNA operates from 0.52GHz to 4.44GHz with a maximum voltage gain of 18.30dB, a minimum noise figure of 2.82dB with equally good matching performance. An $IIP_3$ value of -6.7dBm is achieved in both SISO and SIMO operations. with a maximum current of 42mA consumed (LNA+buffer in SIMO operation) from a 1.2V supply.

A Study on the Design and Fabrication of X-band Power Amplifier for SART (SART용 X-밴드 전력증폭기의 설계와 제작에 관한 연구)

  • 김철수;김미숙;최병하
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.3
    • /
    • pp.29-34
    • /
    • 1999
  • In this paper, an X-band power amplifier using GaAs FET was designed and fabricated, which is to be used as SART transmitter sweeping at the frequency range of 9.2 GHz~9.5 GHz. The amplifier is consist of two stages using ATF-46101 FET of Hewllett-Packard. Finally, the amplifier using microstrip line matching solution shows that MAG is 23 dB at the center frequency of 9.35 GHz.

  • PDF

PHEMT MMIC Broad-Band Power Amplifier for LMDS (Ka 대역 광대역 MMIC 전력증폭기)

  • 백경식;김영기;맹성재;이진희;박철순
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.177-180
    • /
    • 1999
  • A two-stage monolithic microwave integrated circuits (MMIC) broad-band power amplifier with AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (PHEMT) has been developed for the up-link and down-link applications for local multipoint distribution systems (LMDS) in the frequency range of 24~28㎓. The amplifier has a small signal gain of 18.6㏈ at 24.5㎓ and 16.7㏈ at 27.1㎓. It achieved output powers of 19.8㏈m with PAE of 19.8% at 24.5㎓ and 18.8㏈m at 27.1㎓.

  • PDF

Design of a V Band Power Amplifier Using 65 nm CMOS Technology (65 nm CMOS 공정을 이용한 V 주파수대 전력증폭기 설계)

  • Lee, Sungah;Cui, Chenglin;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.403-409
    • /
    • 2013
  • In this work, a CMOS two stage differential power amplifier which includes Marchand balun, transformer and injection-locked buffer is presented. The power amplifier is targeted for 70 GHz frequency band and fabricated using 65 nm technology. The measurement results show 8.5 dB maximum voltage gain at 71.3 GHz and 7.3 GHz 3 dB bandwidth. The measured maximum output power is 8.2 dBm, input $P_{1dB}$ is -2.8 dBm, output $P_{1dB}$ is 4.6 dBm and maximum power added efficiency is 4.9 %. The power amplifier consumes 102 mW DC power from 1.2 V supply voltage.

An implementation of 60W X-band Cascade SSPA for Marine Radar System (선박 레이다용 60W X-band Cascade SSPA 구현)

  • Kim, Min-Soo;Jang, Yeon-Gil;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper, An X-band solid state power amplifier(SSPA) for pulse compressed microwave signal with 60Watt power and power added efficiency(PAE) above 30% is described. Designed 60Watt high power amplifier(HPA) was implemented by cascade coupled amplifiers, and it is consisted on three stage drive amplifiers with internally matched GaAs FET and one stage main power amplifier with an internally matched GaN HEMT. The designed SSPA has performance with more than total power gain 37dB and output power 48dBm(60-W) in condition of frequency range $9.41{\pm}0.03GHz$, pulse period width under 1ms and duty cycle under 10%. The implemented SSPA can apply to high quality digital marine radar applications with pulse compression technique.

High Power W-band Power Amplifier using GaN/Si-based 60nm process (GaN/Si 기반 60nm 공정을 이용한 고출력 W대역 전력증폭기)

  • Hwang, Ji-Hye;Kim, Ki-Jin;Kim, Wan-Sik;Han, Jae-Sub;Kim, Min-Gi;Kang, Bong-Mo;Kim, Ki-chul;Choi, Jeung-Won;Park, Ju-man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.67-72
    • /
    • 2022
  • This study presents the design of power amplifier (PA) in 60 nm GaN/Si HEMT technology. A customized transistor model enables the designing circuits operating at W-band. The all matching network of the PA was composed of equivalent transformer circuit to reduce matching loss. And then, equivalent transformer is several advantages without any additional inductive devices so that a wideband power characteristic can be achieved. The designed die area is 3900 ㎛ × 2300 ㎛. The designed results at center frequency achieved the small signal gain of 15.9 dB, the saturated output power (Psat) of 29.9 dBm, and the power added efficiency (PAE) of 24.2% at the supply voltage of 12 V.

Study on the energy savings in the mobile communication repeater using a power factor correction circuit (역률보상회로를 이용한 이동통신 중계기의 에너지 절감에 관한 연구)

  • Lim, Byoung-Chul;Yoon, Wonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1854-1860
    • /
    • 2014
  • In this paper, the energy saving on mobile communication repeater is studied. DB(Dual Band) small repeater, which is currently used in the field for indoor coverage, is adopted as a test unit. For reducing the power consumption, PFC (Power Factor Correction) is included on SMPS (Switching Mode Power Supply) of the DB small repeater. The test results show that approximately 38.9% of the power consumption is reduced comparing with the repeater without PFC. It means that approximately 230.43kWh per unit can be saved annually.

ETRI 0.25μm GaN MMIC Process and X-Band Power Amplifier MMIC (ETRI 0.25μm GaN MMIC 공정 및 X-대역 전력증폭기 MMIC)

  • Lee, Sang-Heung;Kim, Seong-Il;Ahn, Ho-Kyun;Lee, Jong-Min;Kang, Dong-Min;Kim, Dong Yung;Kim, Haecheon;Min, Byoung-Gue;Yoon, Hyung Sup;Cho, Kyu Jun;Jang, Yoo Jin;Lee, Ki Jun;Lim, Jong-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • In this paper, ETRI's $0.25{\mu}m$ GaN MMIC process is introduced and the fabricated results of X-Band 3 W power amplifier MMIC are discussed. The one-stage X-Band 3 W power amplifier MMIC using the $0.25{\mu}m$ GaN MMIC devices has been designed and fabricated. From the fabricated GaN MMIC, the characteristics of the $0.25{\mu}m$ GaN MMIC process and devices are evaluated and analyzed. The X-band power amplifier MMIC shows output power of 3.5 W, gain of 10 dB, and power-added efficiency of 35 %.