• Title/Summary/Keyword: b-metric

Search Result 374, Processing Time 0.027 seconds

COMMON FIXED POINT FOR GENERALIZED MULTIVALUED MAPPINGS VIA SIMULATION FUNCTION IN METRIC SPACES

  • Antal, Swati;Gairola, U.C.
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1107-1121
    • /
    • 2020
  • The purpose of this paper is to introduce the notion of generalized multivalued Ƶ-contraction and generalized multivalued Suzuki type Ƶ-contraction for pair of mappings and establish common fixed point theorems for such mappings in complete metric spaces. Results obtained in this paper extend and generalize some well known fixed point results of the literature. We deduce some corollaries from our main result and provide examples in support of our results.

Lightweight Quality Metric Based on No-Reference Bitstream for H.264/AVC Video

  • Kim, Yo-Han;Shin, Ji-Tae;Kim, Ho-Kyom
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1388-1399
    • /
    • 2012
  • This paper proposes a quality metric based on a No-Reference Bitstream (NR-B) having least computational complexity for the assessment of the human-perceptual quality of H.264 encoded video. The proposed NR-B method performs a modeling of encoding distortion with three bit-stream information (i.e. frame-rate, motion-vector, and quantization-parameter) that can be directly extractable from the encoded bitstream and does not require additional complex processing of final pictures. From performance evaluation using 165 compressed video sequences, the experiment results show that the proposed metric has a higher correlation with subjective quality than is achieved with other comparable methods.

Extended by Balk Metrics

  • DOVGOSHEY, OLEKSIY;DORDOVSKYI, DMYTRO
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.449-472
    • /
    • 2015
  • Let X be a nonempty set and $\mathcal{F}$(X) be the set of nonempty finite subsets of X. The paper deals with the extended metrics ${\tau}:\mathcal{F}(X){\rightarrow}\mathbb{R}$ recently introduced by Peter Balk. Balk's metrics and their restriction to the family of sets A with ${\mid}A{\mid}{\leqslant}n$ make possible to consider "distance functions" with n variables and related them quantities. In particular, we study such type generalized diameters $diam_{{\tau}^n}$ and find conditions under which $B{\mapsto}diam_{{\tau}^n}B$ is a Balk's metric. We prove the necessary and sufficient conditions under which the restriction ${\tau}$ to the set of $A{\in}\mathcal{F}(X)$ with ${\mid}A{\mid}{\leqslant}3$ is a symmetric G-metric. An infinitesimal analog for extended by Balk metrics is constructed.

Novel Viterbi Decoding Architecture for DVB-T with Improved Performance in Rayleigh Channels (레일레이 채널에서 성능 향상을 위한 DVB-T용 비터비 디코더의 아키텍쳐)

  • Oh, Jung-Youn;Park, Kyu-Hyun;Lee, Seung-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.718-726
    • /
    • 2002
  • This paper presents a novel Viterbi decoding architecture for European Digital Video Broadcasting (DVB) receiver. The channel sate information (CSI) of each sub carrier is used to weight the bit-metric of each symbol. The weighted bit-metric is delivered to Viterbi decoder after going through the symbol deinterleaver and bit deinterleaver, such that the CSI can be correctly applied to corresponding bits even after the two interleavings. Simulation shows that the new architecture gives significant performance enhancement of 6~13dB in Rayleigh fading channels depending on the modulation types. This results is also better than previous results by 3.7~10.3dB.

Common Fixed Point Theorems of Commuting Mappinggs

  • Park, Wee-Tae
    • The Mathematical Education
    • /
    • v.26 no.1
    • /
    • pp.41-45
    • /
    • 1987
  • In this paper, we give several fixed point theorems in a complete metric space for two multi-valued mappings commuting with two single-valued mappings. In fact, our main theorems show the existence of solutions of functional equations f($\chi$)=g($\chi$)$\in$S$\chi$∩T$\chi$ and $\chi$=f($\chi$)=g($\chi$)$\in$S$\chi$∩T$\chi$ under certain conditions. We also answer an open question proposed by Rhoades-Singh-Kulsherestha. Throughout this paper, let (X, d) be a complete metric space. We shall follow the following notations : CL(X) = {A; A is a nonempty closed subset of X}, CB(X)={A; A is a nonempty closed and founded subset of X}, C(X)={A; A is a nonempty compact subset of X}, For each A, B$\in$CL(X) and $\varepsilon$>0, N($\varepsilon$, A) = {$\chi$$\in$X; d($\chi$, ${\alpha}$) < $\varepsilon$ for some ${\alpha}$$\in$A}, E$\sub$A, B/={$\varepsilon$ > 0; A⊂N($\varepsilon$ B) and B⊂N($\varepsilon$, A)}, and (equation omitted). Then H is called the generalized Hausdorff distance function fot CL(X) induced by a metric d and H defined CB(X) is said to be the Hausdorff metric induced by d. D($\chi$, A) will denote the ordinary distance between $\chi$$\in$X and a nonempty subset A of X. Let R$\^$+/ and II$\^$+/ denote the sets of nonnegative real numbers and positive integers, respectively, and G the family of functions ${\Phi}$ from (R$\^$+/)$\^$s/ into R$\^$+/ satisfying the following conditions: (1) ${\Phi}$ is nondecreasing and upper semicontinuous in each coordinate variable, and (2) for each t>0, $\psi$(t)=max{$\psi$(t, 0, 0, t, t), ${\Phi}$(t, t, t, 2t, 0), ${\Phi}$(0, t, 0, 0, t)} $\psi$: R$\^$+/ \longrightarrow R$\^$+/ is a nondecreasing upper semicontinuous function from the right. Before sating and proving our main theorems, we give the following lemmas:

  • PDF

COINCIDENCE THEOREMS VIA CONTRACTIVE MAPPINGS IN ORDERED NON-ARCHIMEDEAN FUZZY METRIC SPACES

  • Prasad, Gopi;Tomar, Anita;Dimri, Ramesh Chandra;Bartwal, Ayush
    • The Pure and Applied Mathematics
    • /
    • v.27 no.4
    • /
    • pp.187-205
    • /
    • 2020
  • In this article, we prove coincidence point theorems for comparable 𝜓-contractive mappings in ordered non-Archimedean fuzzy metric spaces utilizing the recently established concept of 𝓣-comparability and relatively weaker order theoretic variants. With a view to show the usefulness and applicability of this work, we solve the system of ordered Fredholm integral equations as an application. In the process, this presentation generalize and improve some prominent recent results obtained in Mihet [Fuzzy Sets Syst., 159 (6), 739-744, (2008)], Altun and Mihet [ Fixed Point Theory Appl. 2010, 782680, (2010)], Alam and Imdad [Fixed Point Theory, 18(2), 415-432, (2017)] and several others in the settings of partially ordered non-Archimedean fuzzy metric spaces.

On the History of the Birth of Finsler Geometry at Göttingen (괴팅겐에서 핀슬러 기하가 탄생한 역사)

  • Won, Dae Yeon
    • Journal for History of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.133-149
    • /
    • 2015
  • Arrivals of Hilbert and Minkowski at $G\ddot{o}ttingen$ put mathematical science there in full flourish. They further extended its strong mathematical tradition of Gauss and Riemann. Though Riemann envisioned Finsler metric and gave an example of it in his inaugural lecture of 1854, Finsler geometry was officially named after Minkowski's academic grandson Finsler. His tool to generalize Riemannian geometry was the calculus of variations of which his advisor $Carath\acute{e}odory$ was a master. Another $G\ddot{o}ttingen$ graduate Busemann regraded Finsler geometry as a special case of geometry of metric spaces. He was a student of Courant who was a student of Hilbert. These figures all at $G\ddot{o}ttingen$ created and developed Finsler geometry in its early stages. In this paper, we investigate history of works on Finsler geometry contributed by these frontiers.