DOI QR코드

DOI QR Code

ON TRANSLATION SURFACES WITH ZERO GAUSSIAN CURVATURE IN LORENTZIAN SOL3 SPACE

  • BELARBI, LAKEHAL (Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (U.M.A.B.)) ;
  • ZOUBIR, HANIFI (Ecole Nationale Polytechnique d'Oran)
  • Received : 2021.04.15
  • Accepted : 2022.03.06
  • Published : 2022.09.30

Abstract

In this work we classified translation invariant surfaces with zero Gaussian curvature in the 3-dimensional Sol Lie group endowed with Lorentzian metric.

Keywords

Acknowledgement

The authors would like to thank the Referees for all helpful comments and suggestions that have improved the quality of our initial manuscript. The authors were supported by The National Agency Scientific Research (DGRSDT).

References

  1. U. Abresch and H. Rozenberg, A Hopf differential for constant mean curvature surfaces in S2 × ℝ and ℍ2 × ℝ, Acta Math. 193 (2004), 141-174. https://doi.org/10.1007/BF02392562
  2. L. Belarbi, On the symmetries of the Sol3 Lie group, J. Korean Math. Soc. 57 (2020), 523-537. https://doi.org/10.4134/JKMS.j190198
  3. L. Belarbi, Surfaces with constant extrinsically Guassian curvature in the Heisenberg group, Ann. Math. Inform. 50 (2019), 5-17.
  4. L. Belarbi and M. Belkhelfa, On The Ruled Minimal Surfaces in Heisenberg 3-Space With Density, Journal of Interdisciplinary Mathematics 23 (2020), 1141-1155. https://doi.org/10.1080/09720502.2020.1740498
  5. D. Bensikaddour and L. Belarbi, Minimal Translation Surfaces in Lorentz-Heiesenberg 3-Space, Nonlinear Stud. 24 (2017), 859-867.
  6. D. Bensikaddour and L. Belarbi, Minimal Translation Surfaces in Lorentz Heisenberg Space (H3, g2), Journal of Interdisciplinary Mathematics 24 (2021), 881-896. https://doi.org/10.1080/09720502.2020.1815345
  7. D. Bensikaddour and L. Belarbi, Minimal Translation Surfaces in Lorentz-Heiesenberg 3-space with Flat Metric, Differential Geometry-Dynamical Systems 20 (2018), 1-14.
  8. F. Bonahon, Geometric structures on 3-manifolds, In Handbook of geometric topology, North-Holland, Amsterdam, 2002, 93-164.
  9. R. Cadeo, P. Piu and A. Ratto, SO(2)-invariant minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces, Maniscripta Math. 87 (1995), 1-12. https://doi.org/10.1007/BF02570457
  10. B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, Comment. Math. Helv. 82 (2007), 87-131. https://doi.org/10.4171/CMH/86
  11. R. Sa Erap and E. Toubiana, Screw motion surfaces in ℍ2 × ℝ and S2 × ℝ, Illinois J. Math. 49 (2005), 1323-1362. https://doi.org/10.1215/ijm/1258138140
  12. J. Inoguchi, Flat translation surfaces in the 3-dimensional Heisenberg group, J. Geom. 82 (2005), 83-90. https://doi.org/10.1007/s00022-005-1730-1
  13. R. Lopez, Constant mean curvature surfaces in Sol with non-empty boundary, Houston. J. Math. 38 (2012), 1091-1105.
  14. R. Lopez and M.I. Munteanu, Invariant surfaces in homogeneous space Sol with constant curvature, Math. Nach. 287 (2014), 1013-1024. https://doi.org/10.1002/mana.201010083
  15. R. Lopez and M.I. Munteanu, Minimal translation surfaces in Sol3, J. Math. Soc. Japan 64 (2012), 985-1003. https://doi.org/10.2969/jmsj/06430985
  16. J.M. Manzano and R. Souam, The classification of totally ombilical surfaces in homogeneous 3-manifolds, Math. Z. 279 (2015), 557-576. https://doi.org/10.1007/s00209-014-1381-8
  17. W.S. Massey, Surfaces of Gaussian curvature zero in euclidean 3-space, Tohoku Math. J. 14 (1962), 73-79. https://doi.org/10.2748/tmj/1178244205
  18. W.H. Meeks, Constant mean curvature spheres in Sol3, Amer. J. Math. 135 (2013), 1-13. https://doi.org/10.1353/ajm.2013.0011
  19. W.H. Meeks and J. Perez, Constant mean curvature in metric Lie groups, Contemp. Math. 570 (2012), 25-110. https://doi.org/10.1090/conm/570/11304
  20. W.H. Meeks III and H. Rosenberg, The theory of minimal surfaces in 𝕄 × ℝ, Comment. Math. Helv. 80 (2005), 811-885.
  21. B. Nelli and H. Rozenberg, Minimal surfaces in ℍ2 × ℝ, Bull. Braz. Math. Soc. 33 (2002), 263-292. https://doi.org/10.1007/s005740200013
  22. H. Rosenberg, Minimal surfaces in 𝕄2 × ℝ, Illinois J. Math. 46 (2002), 1177-1195. https://doi.org/10.1215/ijm/1258138473
  23. P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487. https://doi.org/10.1112/blms/15.5.401
  24. R. Souam and E. Toubiana, On the classification and regularity of umbilic surfaces in homogeneous 3-manifolds, Mat. Contemp. 30 (2006), 201-215.
  25. R. Souam and E. Toubiana, Totally umbilic surfaces in homogeneous 3-manifolds, Comm. Math. Helv. 84 (2009), 673-704.
  26. R. Souam, On stable constant mean curvature surfaces in S2 ×ℝ and ℍ2 ×ℝ, Trans. Amer. Math. Soc. 362 (2010), 2845-2857. https://doi.org/10.1090/S0002-9947-10-04826-9
  27. W.M. Thurston, Three-dimensional Geometry and Topology I, Princeton Math. Series(Levi, S. ed) 1997.