References
- A. Alam & M. Imdad : Comparable linear contractions in ordered metric spaces. Fixed Point Theory 18 (2017), no. 2, 415-432. https://doi.org/10.24193/fpt-ro.2017.2.33
- A. Alam & M. Imdad: Monotone generalized contractions in ordered metric spaces. Bull. Korean Math. Soc. 53 (2016), no. 1, 61-81. https://doi.org/10.4134/BKMS.2016.53.1.061
- I. Altun & D. Mihet : Ordered non-Archimedean fuzzy metric spaces and some fixed point results. Fixed Point Theory Appl. 2010 (2010), Article ID 782680.
- I. Altun : Some fixed point theorems for single and multi valued mappings on ordered non-Archimedean fuzzy metric spaces. Iran. J. Fuzzy Syst. 7 (2010), no. 1, 91-96.
- R. C. Dimri & G. Prasad : Coincidence theorems for comparable generalized non-linear contractions in ordered partial metric spaces. Commun. Korean Math. Soc. 32 (2017), no. 2, 375-387. https://doi.org/10.4134/CKMS.c160127
- A. George & P. Veeramani : On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64 (1994), no. 3, 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
- K. Goebel : A coincidence theorem. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 16 (1968), 733-735.
- M. Grabiec : Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27 (1988), no. 3, 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
- V. Gregori, J.J. Minana & D. Miravet : Contractive sequences in fuzzy metric spaces. Fuzzy Sets Syst. 379 (2020), 125-133. https://doi.org/10.1016/j.fss.2019.01.003
- V. Gregori & J.J. Minana : On fuzzy ψ-contractive sequences and fixed point theorems. Fuzzy Sets Syst. 300 (2016), 93-101. https://doi.org/10.1016/j.fss.2015.12.010
- V. Istratescu : An Introduction to Theory of Probabilistic Metric Spaces with Applications, Ed, Tehnica, Bucuresti, 1974 (in Romanian).
- R.H. Haghi, Sh. Rezapour & N. Shahzad : Some fixed point generalizations are not real generalizations. Nonlinear Anal. :Theory, Method and Appl. 74 (2011), no. 5, 1799-1803. https://doi.org/10.1016/j.na.2010.10.052
- G. Jungck & B.E. Rhoades : Fixed points for set valued functions without continuity. Indian J. Pure Appl. Math. 29 (1998), no. 3, 227-238.
- I. Kramosil & J. Michalek : Fuzzy metrics and statistical metric spaces. Kybernetika 11 (1975), no. 5, 336-344.
- S. Lipschutz : Schaum's Outlines of Theory and Problems of Set Theory and Related Topics. McGraw-Hill, New York, USA, 1964.
- D. Mihet : Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst. 159 (2008), no. 6, 739-744. https://doi.org/10.1016/j.fss.2007.07.006
- S.N. Mishra, N. Sharma & S.L. Singh : Common fixed points of maps on fuzzy metric spaces. Int. J. Math. Math. Sci. 17 (1994), no. 2, 253-258. https://doi.org/10.1155/S0161171294000372
- J.J. Nieto & R. Rodriguez-Lopez : Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22 (2005), 223-239. https://doi.org/10.1007/s11083-005-9018-5
- R.P. Pant : A common fixed point theorem under a new condition. Indian J. Pure Appl. Math. 30 (1999), 147-152.
- G. Prasad & R.C. Dimri : Fixed point theorems via comparable mappings in ordered metric spaces. J. Anal. 27 (2019), no. 4, 1139-1150. https://doi.org/10.1007/s41478-019-00165-5
- A.C M. Ran & M.C.B. Reurings : A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132 (2003), no. 5, 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
- B. Said & A. Tomar : Integral type common fixed point theorems in modied intu-itionistic fuzzy metric spaces. Afr. Math. 30 (2019), 581-596. https://doi.org/10.1007/s13370-019-00668-1
- B. Schweizer & A. Sklar : Statistical metric spaces. Pac. J. Math. 10 (1960), 313-334. https://doi.org/10.2140/pjm.1960.10.313
- S. L. Singh & A. Tomar : Fixed point theorems in FM-spaces. Fuzzy Mathematics 12(2004), no. 4, 845-859.
- M. Turinici : Fixed points for monotone iteratively local contractions. Demonstr. Math.19 (1986), no. 1, 171-180.
- M. Turinici : Ran-Reurings fixed point results in ordered metric spaces. Libertas Math. 31(2011), 49-55.