DOI QR코드

DOI QR Code

COINCIDENCE THEOREMS VIA CONTRACTIVE MAPPINGS IN ORDERED NON-ARCHIMEDEAN FUZZY METRIC SPACES

  • Received : 2019.09.15
  • Accepted : 2020.11.08
  • Published : 2020.11.30

Abstract

In this article, we prove coincidence point theorems for comparable 𝜓-contractive mappings in ordered non-Archimedean fuzzy metric spaces utilizing the recently established concept of 𝓣-comparability and relatively weaker order theoretic variants. With a view to show the usefulness and applicability of this work, we solve the system of ordered Fredholm integral equations as an application. In the process, this presentation generalize and improve some prominent recent results obtained in Mihet [Fuzzy Sets Syst., 159 (6), 739-744, (2008)], Altun and Mihet [ Fixed Point Theory Appl. 2010, 782680, (2010)], Alam and Imdad [Fixed Point Theory, 18(2), 415-432, (2017)] and several others in the settings of partially ordered non-Archimedean fuzzy metric spaces.

Keywords

References

  1. A. Alam & M. Imdad : Comparable linear contractions in ordered metric spaces. Fixed Point Theory 18 (2017), no. 2, 415-432. https://doi.org/10.24193/fpt-ro.2017.2.33
  2. A. Alam & M. Imdad: Monotone generalized contractions in ordered metric spaces. Bull. Korean Math. Soc. 53 (2016), no. 1, 61-81. https://doi.org/10.4134/BKMS.2016.53.1.061
  3. I. Altun & D. Mihet : Ordered non-Archimedean fuzzy metric spaces and some fixed point results. Fixed Point Theory Appl. 2010 (2010), Article ID 782680.
  4. I. Altun : Some fixed point theorems for single and multi valued mappings on ordered non-Archimedean fuzzy metric spaces. Iran. J. Fuzzy Syst. 7 (2010), no. 1, 91-96.
  5. R. C. Dimri & G. Prasad : Coincidence theorems for comparable generalized non-linear contractions in ordered partial metric spaces. Commun. Korean Math. Soc. 32 (2017), no. 2, 375-387. https://doi.org/10.4134/CKMS.c160127
  6. A. George & P. Veeramani : On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64 (1994), no. 3, 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
  7. K. Goebel : A coincidence theorem. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 16 (1968), 733-735.
  8. M. Grabiec : Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27 (1988), no. 3, 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
  9. V. Gregori, J.J. Minana & D. Miravet : Contractive sequences in fuzzy metric spaces. Fuzzy Sets Syst. 379 (2020), 125-133. https://doi.org/10.1016/j.fss.2019.01.003
  10. V. Gregori & J.J. Minana : On fuzzy ψ-contractive sequences and fixed point theorems. Fuzzy Sets Syst. 300 (2016), 93-101. https://doi.org/10.1016/j.fss.2015.12.010
  11. V. Istratescu : An Introduction to Theory of Probabilistic Metric Spaces with Applications, Ed, Tehnica, Bucuresti, 1974 (in Romanian).
  12. R.H. Haghi, Sh. Rezapour & N. Shahzad : Some fixed point generalizations are not real generalizations. Nonlinear Anal. :Theory, Method and Appl. 74 (2011), no. 5, 1799-1803. https://doi.org/10.1016/j.na.2010.10.052
  13. G. Jungck & B.E. Rhoades : Fixed points for set valued functions without continuity. Indian J. Pure Appl. Math. 29 (1998), no. 3, 227-238.
  14. I. Kramosil & J. Michalek : Fuzzy metrics and statistical metric spaces. Kybernetika 11 (1975), no. 5, 336-344.
  15. S. Lipschutz : Schaum's Outlines of Theory and Problems of Set Theory and Related Topics. McGraw-Hill, New York, USA, 1964.
  16. D. Mihet : Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst. 159 (2008), no. 6, 739-744. https://doi.org/10.1016/j.fss.2007.07.006
  17. S.N. Mishra, N. Sharma & S.L. Singh : Common fixed points of maps on fuzzy metric spaces. Int. J. Math. Math. Sci. 17 (1994), no. 2, 253-258. https://doi.org/10.1155/S0161171294000372
  18. J.J. Nieto & R. Rodriguez-Lopez : Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22 (2005), 223-239. https://doi.org/10.1007/s11083-005-9018-5
  19. R.P. Pant : A common fixed point theorem under a new condition. Indian J. Pure Appl. Math. 30 (1999), 147-152.
  20. G. Prasad & R.C. Dimri : Fixed point theorems via comparable mappings in ordered metric spaces. J. Anal. 27 (2019), no. 4, 1139-1150. https://doi.org/10.1007/s41478-019-00165-5
  21. A.C M. Ran & M.C.B. Reurings : A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132 (2003), no. 5, 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
  22. B. Said & A. Tomar : Integral type common fixed point theorems in modied intu-itionistic fuzzy metric spaces. Afr. Math. 30 (2019), 581-596. https://doi.org/10.1007/s13370-019-00668-1
  23. B. Schweizer & A. Sklar : Statistical metric spaces. Pac. J. Math. 10 (1960), 313-334. https://doi.org/10.2140/pjm.1960.10.313
  24. S. L. Singh & A. Tomar : Fixed point theorems in FM-spaces. Fuzzy Mathematics 12(2004), no. 4, 845-859.
  25. M. Turinici : Fixed points for monotone iteratively local contractions. Demonstr. Math.19 (1986), no. 1, 171-180.
  26. M. Turinici : Ran-Reurings fixed point results in ordered metric spaces. Libertas Math. 31(2011), 49-55.