References
- A. Alotaibi & S.M. Alsulami: Coupled coincidence points for monotone operators in partially ordered metric spaces. Fixed Point Theory Appl. 2011, 44.
- S.M. Alsulami: Some coupled coincidence point theorems for a mixed monotone operator in a complete metric space endowed with a partial order by using altering distance functions. Fixed Point Theory Appl. 2013, 194.
- T.G. Bhaskar & V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
- B. Deshpande & A. Handa: Coincidence point results for weak ψ - φ contraction on partially ordered metric spaces with application. Facta Universitatis Ser. Math. Inform. 30 (2015), no. 5, 623-648.
- B. Deshpande, A. Handa & S.A. Thoker: Existence of coincidence point under generalized nonlinear contraction with applications. East Asian Math. J. 32 (2016), no. 3, 333-354. https://doi.org/10.7858/eamj.2016.025
- B. Deshpande & A. Handa: On coincidence point theorem for new contractive condition with application. Facta Universitatis Ser. Math. Inform. 32 (2017) no. 2, 209-229. https://doi.org/10.22190/FUMI1702209D
- B. Deshpande & A. Handa: Multidimensional coincidence point results for generalized (ψ, θ, φ)-contraction on ordered metric spaces. J. Nonlinear Anal. Appl. 2017 (2017), no. 2, 132-143. https://doi.org/10.5899/2017/jnaa-00314
- B. Deshpande & A. Handa: Utilizing isotone mappings under Geraghty-type contraction to prove multidimensional fixed point theorems with application. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 25 (2018), no. 4, 279-95.
- B. Deshpande & A. Handa: Application of coupled fixed point technique in solving integral equations on modified intuitionistic fuzzy metric spaces. Adv. Fuzzy Syst. Volume 2014, Article ID 348069.
- B. Deshpande & A. Handa: Nonlinear mixed monotone-generalized contractions on partially ordered modified intuitionistic fuzzy metric spaces with application to integral equations. Afr. Mat. 26 (2015), no. 3-4, 317-343. https://doi.org/10.1007/s13370-013-0204-0
- I.M. Erhan, E. Karapinar, A. Roldan & N. Shahzad: Remarks on coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl. 2014, 207.
- A. George & P. Veeramani: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
- J. Harjani & K. Sadarangani: Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations. Nonlinear Anal. 72 (2010), 1188-1197. https://doi.org/10.1016/j.na.2009.08.003
- J. Harjani, B. Lopez & K. Sadarangani: Fixed point theorems for mixed monotone operators and applications to integral equations. Nonlinear Anal. 74 (2011), 1749-1760. https://doi.org/10.1016/j.na.2010.10.047
- V. Istratescu: An Introduction to Theory of Probabilistic Metric Spaces with Applications. Ed, Tehnica, Bucuresti, 1974 (in Romanian).
- N.V. Luong & N.X. Thuan: Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal. 74 (2011), 983-992. https://doi.org/10.1016/j.na.2010.09.055
- J.J. Nieto & R. Rodriguez-Lopez: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22 (2005), 223-239. https://doi.org/10.1007/s11083-005-9018-5
- A.C.M. Ran & M.C.B. Reurings: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132 (2004), 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
- A. Razani & V. Parvaneh: Coupled coincidence point results for (ψ, α, β)-weak contractions in partially ordered metric spaces. J. Appl. Math. 2012, Article ID 496103.
- B. Schweizer & A. Sklar: Statistical metric spaces. Pacific J. Math. 10 (1960), 314-334.
- F. Shaddad, M.S.M. Noorani, S.M. Alsulami & H. Akhadkulov: Coupled point results in partially ordered metric spaces without compatibility. Fixed Point Theory Appl. 2014, 204.