References
- A. S. S. Alharbi, H. H. Alsulami, and E. Karapinar, On the power of simulation and admissible functions in metric fixed point theory, J. Funct. Spaces 2017 (2017), Art. ID 2068163, 7 pp. https://doi.org/10.1155/2017/2068163
-
B. Alqahtani, A. Fulga, and E. Karapinar, Fixed point results on
${\Delta}$ -symmetric quasi- metric space via simulation function with an application to Ulam stability. Math. 6 (2018), Article No. 208. https://doi.org/10.3390/math6100208 - O. Alqahtani and E. Karapinar, A bilateral contraction via simulation function, Filomat 33 (2019), no. 15, 4837-4843. https://doi.org/10.2298/FIL1915837A
-
E. Ameer, M. Arshad, D. Shin, and S. Yun, Common fixed point theorems of generalized multivalued
$({\psi}, {\phi})$ -contractions in complete metric spaces with application. Math. 7 (2019), Article No. 194. https://doi.org/10.3390/math7020194 - H. Argoubi, B. Samet, and C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl. 8 (2015), no. 6, 1082-1094. https://doi.org/10.22436/jnsa.008.06.18
- H. Aydi, M. Abbas, and C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology Appl. 159 (2012), no. 14, 3234-3242. https://doi.org/10.1016/j.topol.2012.06.012
- H. Aydi, E. Karapinar, and V. Rakoccevic, Nonunique fixed point theorems on b-metric spaces via simulation functions, Jordan J. Math. Stat. 12 (2019), no. 3, 265-288.
- S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
- M. Berinde and V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl. 326 (2007), no. 2, 772-782. https://doi.org/10.1016/j.jmaa. 2006.03.016
- L. Ciric, Multi-valued nonlinear contraction mappings, Nonlinear Anal. 71 (2009), no. 7-8, 2716-2723. https://doi.org/10.1016/j.na.2009.01.116
- H. Covitz and S. B. Nadler, Jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11. https://doi.org/10.1007/BF02771543
- E. Karapinar, Fixed points results via simulation functions, Filomat 30 (2016), no. 8, 2343-2350. https://doi.org/10.2298/FIL1608343K
- E. Karapinar and R. P. Agarwal, Interpolative Rus-Reich-Ciric type contractions via simulation functions, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 27 (2019), no. 3, 137-152. https://doi.org/10.2478/auom-2019-0038
- F. Khojasteh, S. Shukla, and S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat 29 (2015), no. 6, 1189-1194. https://doi.org/10.2298/FIL1506189K
- D. Klim and D.Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl. 334 (2007), no. 1, 132-139. https://doi.org/10.1016/j.jmaa.2006.12.012
- X.-L. Liu, A. H. Ansari, S. Chandok, and S. Radenovic, On some results in metric spaces using auxiliary simulation functions via new functions, J. Comput. Anal. Appl. 24 (2018), no. 6, 1103-1114.
- J. T. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc. 74 (1968), 639-640. https://doi.org/10.1090/S0002-9904-1968-11971-8
- N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), no. 1, 177-188. https://doi.org/10.1016/0022-247X(89)90214-X
- S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488. http://projecteuclid.org/euclid.pjm/1102978504 https://doi.org/10.2140/pjm.1969.30.475
- M. Olgun, O. Bicer, and T. Alyildiz, A new aspect to Picard operators with simulation functions, Turkish J. Math. 40 (2016), no. 4, 832-837. https://doi.org/10.3906/mat-1505-26
- A. Padcharoen, P. Kumam, P. Saipara, and P. Chaipunya, Generalized Suzuki type Z-contraction in complete metric spaces, Kragujevac J. Math. 42 (2018), no. 3, 419-430. https://doi.org/10.5937/kgjmath1803419p
- S. Radenovic and S. Chandok, Simulation type functions and coincidence points, Filomat 32 (2018), no. 1, 141-147. https://doi.org/10.2298/fil1801141r
- A.-F. Roldan-Lopez-de-Hierro, E. Karapinar, C. Roldan-Lopez-de-Hierro, and J. Martinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math. 275 (2015), 345-355. https://doi.org/10.1016/j.cam.2014.07.011