DOI QR코드

DOI QR Code

COMMON FIXED POINT FOR GENERALIZED MULTIVALUED MAPPINGS VIA SIMULATION FUNCTION IN METRIC SPACES

  • Antal, Swati (Department of Mathematics H. N. B. Garhwal University, BGR Campus) ;
  • Gairola, U.C. (Department of Mathematics H. N. B. Garhwal University, BGR Campus)
  • Received : 2019.11.10
  • Accepted : 2020.06.04
  • Published : 2020.10.31

Abstract

The purpose of this paper is to introduce the notion of generalized multivalued Ƶ-contraction and generalized multivalued Suzuki type Ƶ-contraction for pair of mappings and establish common fixed point theorems for such mappings in complete metric spaces. Results obtained in this paper extend and generalize some well known fixed point results of the literature. We deduce some corollaries from our main result and provide examples in support of our results.

Keywords

References

  1. A. S. S. Alharbi, H. H. Alsulami, and E. Karapinar, On the power of simulation and admissible functions in metric fixed point theory, J. Funct. Spaces 2017 (2017), Art. ID 2068163, 7 pp. https://doi.org/10.1155/2017/2068163
  2. B. Alqahtani, A. Fulga, and E. Karapinar, Fixed point results on ${\Delta}$-symmetric quasi- metric space via simulation function with an application to Ulam stability. Math. 6 (2018), Article No. 208. https://doi.org/10.3390/math6100208
  3. O. Alqahtani and E. Karapinar, A bilateral contraction via simulation function, Filomat 33 (2019), no. 15, 4837-4843. https://doi.org/10.2298/FIL1915837A
  4. E. Ameer, M. Arshad, D. Shin, and S. Yun, Common fixed point theorems of generalized multivalued $({\psi}, {\phi})$-contractions in complete metric spaces with application. Math. 7 (2019), Article No. 194. https://doi.org/10.3390/math7020194
  5. H. Argoubi, B. Samet, and C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl. 8 (2015), no. 6, 1082-1094. https://doi.org/10.22436/jnsa.008.06.18
  6. H. Aydi, M. Abbas, and C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology Appl. 159 (2012), no. 14, 3234-3242. https://doi.org/10.1016/j.topol.2012.06.012
  7. H. Aydi, E. Karapinar, and V. Rakoccevic, Nonunique fixed point theorems on b-metric spaces via simulation functions, Jordan J. Math. Stat. 12 (2019), no. 3, 265-288.
  8. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
  9. M. Berinde and V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl. 326 (2007), no. 2, 772-782. https://doi.org/10.1016/j.jmaa. 2006.03.016
  10. L. Ciric, Multi-valued nonlinear contraction mappings, Nonlinear Anal. 71 (2009), no. 7-8, 2716-2723. https://doi.org/10.1016/j.na.2009.01.116
  11. H. Covitz and S. B. Nadler, Jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11. https://doi.org/10.1007/BF02771543
  12. E. Karapinar, Fixed points results via simulation functions, Filomat 30 (2016), no. 8, 2343-2350. https://doi.org/10.2298/FIL1608343K
  13. E. Karapinar and R. P. Agarwal, Interpolative Rus-Reich-Ciric type contractions via simulation functions, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 27 (2019), no. 3, 137-152. https://doi.org/10.2478/auom-2019-0038
  14. F. Khojasteh, S. Shukla, and S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat 29 (2015), no. 6, 1189-1194. https://doi.org/10.2298/FIL1506189K
  15. D. Klim and D.Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl. 334 (2007), no. 1, 132-139. https://doi.org/10.1016/j.jmaa.2006.12.012
  16. X.-L. Liu, A. H. Ansari, S. Chandok, and S. Radenovic, On some results in metric spaces using auxiliary simulation functions via new functions, J. Comput. Anal. Appl. 24 (2018), no. 6, 1103-1114.
  17. J. T. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc. 74 (1968), 639-640. https://doi.org/10.1090/S0002-9904-1968-11971-8
  18. N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), no. 1, 177-188. https://doi.org/10.1016/0022-247X(89)90214-X
  19. S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488. http://projecteuclid.org/euclid.pjm/1102978504 https://doi.org/10.2140/pjm.1969.30.475
  20. M. Olgun, O. Bicer, and T. Alyildiz, A new aspect to Picard operators with simulation functions, Turkish J. Math. 40 (2016), no. 4, 832-837. https://doi.org/10.3906/mat-1505-26
  21. A. Padcharoen, P. Kumam, P. Saipara, and P. Chaipunya, Generalized Suzuki type Z-contraction in complete metric spaces, Kragujevac J. Math. 42 (2018), no. 3, 419-430. https://doi.org/10.5937/kgjmath1803419p
  22. S. Radenovic and S. Chandok, Simulation type functions and coincidence points, Filomat 32 (2018), no. 1, 141-147. https://doi.org/10.2298/fil1801141r
  23. A.-F. Roldan-Lopez-de-Hierro, E. Karapinar, C. Roldan-Lopez-de-Hierro, and J. Martinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math. 275 (2015), 345-355. https://doi.org/10.1016/j.cam.2014.07.011