• Title/Summary/Keyword: axenic

Search Result 59, Processing Time 0.018 seconds

Evaluation of Antimicrobial Properties of Lichen Substances against Plant Pathogens

  • Paguirigan, Jaycee A.;Liu, Rundong;Im, Seong Mi;Hur, Jae-Seoun;Kim, Wonyong
    • The Plant Pathology Journal
    • /
    • v.38 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • Plant pathogens pose major threats on agriculture and horticulture, causing significant economic loss worldwide. Due to the continuous and excessive use of synthetic pesticides, emergence of pesticide resistant pathogens has become more frequent. Thus, there is a growing needs for environmentally-friendly and selective antimicrobial agents with a novel mode of action, which may be used in combination with conventional pesticides to delay development of pesticide resistance. In this study, we evaluated the potentials of lichen substances as novel biopesticides against eight bacterial and twelve fungal plant pathogens that have historically caused significant phytopathological problems in South Korea. Eight lichen substances of diverse chemical origins were extracted from axenic culture or dried specimen, and further purified for comparative analysis of their antimicrobial properties. Usnic acid and vulpinic acid exhibited strong antibacterial activities against Clavibacter michiganensis subsp. michiganensis. In addition, usnic acid and vulpinic acid were highly effective in the growth inhibition of fungal pathogens, such as Diaporthe eres, D. actinidiae, and Sclerotinia sclerotiorum. Intriguingly, the growth of Rhizoctonia solani was specifically inhibited by lecanoric acid, indicating that lichen substances exhibit some degrees of selectivity to plant pathogens. These results suggested that lichen substance can be used as a selective biopesticide for controlling plant disease of agricultural and horticultural significance, minimizing possible emergence of pesticide resistant pathogens in fields.

An Efficient in vitro Micropropagation for Production of Disease-free Bulbs in Korean Native Lilium

  • Song, Jae-Young;Yi, Jung-Yoon;Yoon, Mun-Sup;Lee, Jung-Ro;Lee, Young-Yi
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.730-734
    • /
    • 2019
  • Cryopreservation is one of the ideal and suitable methods for long-term storage of plant germplasm. The plant contaminated with diseases and pathogens are decreased the multiplication rate, survival rate and high quality of plants after cryopreservation. The aim of this work was to improve a micropropagation method for lily in Korea, which is indigenous plant. In the last process of rinsing scales after surface-sterilization, we tried to control the diseases and pathogens lived within the tissue by rinsing in 0.03% sodium hypochlorite (NaClO) instead of sterile distilled water. Bulb scales of Lilium were cultured in vitro on MS medium supplemented with Plant Preservative Mixture (PPM). The results showed that L. tsingtauense accessions were observed ranged from 53.9 to 100% with a mean value of 76.8% and L. hansonii accessions were checked from 84.5 to 85.5% with a mean of 85% survival rate. The newly small bulb formed from bulb-scales was transferred to MS medium. We checked the presence of microorganisms and survival rate after 3 weeks in culture after examination of bacterial incidences. The results indicated that the non-contamination rate were shown ranged from 75.0 to 94.1% with mean value of 83.2% in L. tsingtauense species, and that L. hansonii were observed 85.1 to 91.7% with mean value of 88.4%. This study will provide a valuable basis for establishment of effective axenic cultures for in vitro micropropagation of Korean native lily species.

The Role of Gut Microbiota in Obesity and Utilization of Fermented Herbal Extracts (비만에서 장내 미생물 균총의 역할과 발효 한양의 활용)

  • Park, Jung-Hyun;Kim, Ho-Jun;Lee, Myeong-Jong
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Complex microbial communities play an important role in the human health and co-evolved with human in the form of symbiosis. Many literatures provide new evidences that the increased prevalence of obesity cannot be attributed solely to changes in the human genome, nutritional habits, or reduction of physical activity in our daily lives. The intestinal flora was recently proposed as an environmental factor responsible for the control of body weight and energy metabolism. A number of studies suggest that the modulation of gut microbiota affects host metabolism and has an impact on energy storage and demonstrated a role for the gut microbiota in weight gain, fat increase, and insulin resistance. Variations in microbiota composition are found in obese humans and mice and the microbiota from an obese mouse confers an obese phenotype when transferred to an axenic mouse. As well, the gut microbial flora plays a role in converting nutrients into calories. Specific strategies for modifying gut microbiota may be a useful means to treat or prevent obesity. Dietary modulations of gut microbiota with a view to increasing bifidobacteria have demonstrated to reduce endotoxemia and improve metabolic diseases such as obesity. The fermentation of medicinal herbs is intended to exert a favorable influence on digestability, bioavailability and pharmacological activity of herbal extract. Therefore we also expect that the fermented herbal extracts may open up a new area to treat obesity through modulating gut microbiota.

  • PDF

Efficient Liquid Media for Encystation of Pathogenic Free-Living Amoebae

  • Sohn, Hae-Jin;Kang, Heekyoung;Seo, Ga-Eun;Kim, Jong-Hyun;Jung, Suk-Yul;Shin, Ho-Joon
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.3
    • /
    • pp.233-238
    • /
    • 2017
  • Pathogenic Naegleria fowleri, Acanthamoeba castellanii, and Acanthamoeba polyphaga, are distributed worldwide. They are causative agents of primary amoebic meningoencephalitis or acanthamoebic keratitis in humans, respectively. Trophozoites encyst in unfavorable environments, such as exhausted food supply and desiccation. Until recently, the method of N. fowleri encystation used solid non-nutrient agar medium supplemented with heat-inactivated Escherichia coli; however, for the amoebic encystment of Acanthamoeba spp., a defined, slightly modified liquid media is used. In this study, in order to generate pure N. fowleri cysts, a liquid encystment medium (buffer 1) modified from Page's amoeba saline was applied for encystation of N. fowleri. N. fowleri cysts were well induced after 24 hr with the above defined liquid encystment medium (buffer 1). This was confirmed by observation of a high expression of differential mRNA of nfa1 and actin genes in trophozoites. Thus, this liquid medium can replace the earlier non-nutrient agar medium for obtaining pure N. fowleri cysts. In addition, for cyst formation of Acanthamoeba spp., buffer 2 (adjusted to pH 9.0) was the more efficient medium. To summarize, these liquid encystment media may be useful for further studies which require axenic and pure amoebic cysts.

First record of a marine microalgal species, Chlorella gloriosa (Trebouxiophyceae) isolated from the Dokdo Islands, Korea

  • Kang, Nam Seon;Lee, Jung A;Jang, Hyeong Seok;Kim, Kyeong Mi;Kim, Eun Song;Yoon, Moongeun;Hong, Ji Won
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.526-534
    • /
    • 2019
  • Chlorella gloriosa (Chlorellaceae, Trebouxiophyceae) was isolated from seawater off the coast of the Dokdo Islands in Korea. An axenic culture was established using the streak-plate method on f/2 agar media supplemented with antibiotics, allowing identification of the isolate by morphological, molecular, and physiological analyses. The morphological characteristics observed by light and electron microscopy revealed typical morphologies of C. gloriosa species. The molecular phylogenetic inference drawn from the small-subunit 18S rRNA sequence verified that the microalgal strain belongs to C. gloriosa. Additionally, gas chromatography-mass spectrometry analysis showed that the isolate was rich in nutritionally important omega-3 and -6 polyunsaturated fatty acids and high-performance liquid chromatography analysis revealed that the high-value antioxidants lutein and violaxanthin were biosynthesized as accessory pigments by this microalga, with arabinose, galactose, and glucose as the major monosaccharides. Therefore, in this study, a Korean marine C. gloriosa species was discovered, characterized, and described, and subsequently added to the national culture collection.

Genetic Improvement for the Low Salinity-Tolerant Porphyra Sp. by Cell Culture Technique I. Tissue Culture of Porphyra yezoensis foma narawaensis (세포배양기술에 의한 김의 내저염성 품종개량 I. 큰방사무늬김의 조직배양)

  • Hong Yang Ki;Sohn Chul Hyun;Chang Jung Won
    • Journal of Aquaculture
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1989
  • Axenic tissue culture of a marine red algae Porphyra yezoensis foma narawaensis was established for the vegetative propagation of tissues as a seed stock and for the development of a low salinity-tolerant cell line. Callus tissues have been induced from the vegetative area of blade away from the hold fast when grown on PES-agar medium. The brownish red fragile callus was maintained under fluorescent light of ca. 2000 lux with 12 : 12 hr L : D at $16^{\circ}C$. Amounts of carbohydrate and protein was determined against the weight of callus. Optimum temperature of the callus growth was $14^{\circ}C\~18^{\circ}C$. Optimun concentration of sodium chloride was $2.0\%$ for the callus growth in PES-agar medium.

  • PDF

Interactions between Entodinium caudatum and an amino acid-fermenting bacterial consortium: fermentation characteristics and protozoal population in vitro

  • Tansol Park;Zhongtang Yu
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.387-400
    • /
    • 2023
  • Ruminal protozoa, especially entodiniomorphs, engulf other members of the rumen microbiome in large numbers; and they release oligopeptides and amino acids, which can be fermented to ammonia and volatile fatty acids (VFAs) by amino acid-fermenting bacteria (AAFB). Studies using defaunated (protozoa-free) sheep have demonstrated that ruminal protozoa considerably increase intraruminal nitrogen recycling but decrease nitrogen utilization efficiency in ruminants. However, direct interactions between ruminal protozoa and AAFB have not been demonstrated because of their inability to establish axenic cultures of any ruminal protozoan. Thus, this study was performed to evaluate the interaction between Entodinium caudatum, which is the most predominant rumen ciliate species, and an AAFB consortium in terms of feed degradation and ammonia production along with the microbial population shift of select bacterial species (Prevotella ruminicola, Clostridium aminophilum, and Peptostreptococcus anaerobius). From an Ent. caudatum culture that had been maintained by daily feeding and transfers every 3 or 4 days, the bacteria and methanogens loosely associated with Ent. caudatum cells were removed by filtration and washing. An AAFB consortium was established by repeated transfers and enrichment with casamino acids as the sole substrate. The cultures of Ent. caudatum alone (Ec) and AAFB alone (AAFB) and the co-culture of Ent. caudatum and AAFB (Ec + AAFB) were set up in three replicates and incubated at 39℃ for 72 h. The digestibility of dry matter (DM) and fiber (NDF), VFA profiles, ammonia concentrations, pH, and microscopic counts of Ent. caudatum were compared among the three cultures. The co-culture of AAFB and Ent. caudatum enhanced DM degradation, VFA production, and Ent. caudatum cell counts; conversely, it decreased acetate: propionate ratio although the total bacterial abundance was similar between Ec and the Ec + AAFB co-culture after 24 h incubation. The ammonia production and relative abundance of C. aminophilum and P. anaerobius did not differ between AAFB alone and the Ec + AAFB co-culture. Our results indicate that Ent. caudatum and AAFB could have a mutualistic interaction that benefited each other, but their interactions were complex and might not increase ammoniagenesis. Further research should examine how such interactions affect the population dynamics of AAFB.

A Commensal Thermophile, Symbiobacterium toebii: Distribution, Characterization, and Genome Analysis

  • Bae Jin-Woo;Kim Kwang;Song Jae Jun;Ha Jae Seok;Kim Joong-Jae;Kang Gwan-Tae;Kim Mi-Hwa;Hong Seung-Pyo;Sung Moon-Hee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.46-53
    • /
    • 2001
  • A commensal thermophile, Symbiobacterium toebii, isolated from hay compost (toebii) in Korea commensally interacted with a thermophilic Geobacillus toebii sp. nov., which was a new species within the genus Geobacillus on the basis of the phenotypic traits and molecular systematic data. S. toebii required the crude extracts and/or culture supernatant of the Geobacillus toebii for axenic growth and could grow on the temperature between 45 and $70^{\circ}C$ (optimum: $60^{\circ}C$; 2.4 h doubling time) and pH 6.0 and 9.0 (optimum: pH 7.5). The G+C content of the genomic DNA was $65 mol\%$, and the major quinones were MK-6 and MK-7. A phylogenetic analysis of its 16S rDNA sequence indicated that Symbiobacterium toebii was closely related with solely reported Symbiobacterium thermophilum. The presence of the commensal thermophile 16S rDNA and accumulation of indole in all the enriched cultures indicate that Symbiobacterium toebii is widely distributed in the various soils. The genome of S. toebii constituted a circular chromosome of 3,280,275 base pairs and there was not an extra-chromosomal element (ECE). It contained about 4,107 predicted coding sequences. Of these protein coding genes, about $45.6\%$ was encoded well-known proteins and annotated the functional assignment of 1,874 open reading frames (ORFs), and the rest predicted to have unknown functions. The genes encoding thermostable tyrosine phenol-lyase and tryptophan indole-lyase were cloned from the genomic DNA of S. toebii and the enzymatic production of L-tyrosine and L-tryptophan was carried out with two thermostable enzymes overexpressed in recombinant E. coli.

  • PDF

Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts (분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개)

  • Munusamy, Madhaiyan;Sa, Tongmin;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.266-287
    • /
    • 2004
  • The non infecting, plant associated bacteria have attracted increased attention for stimulating plant growth and as environmental friendly plant protecting agents. Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. As the leaves of most or all plants harbor PPFMs that utilize leaf methanol as their sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. Although they are not well known, these bacteria are co-evolved, interacting partners in plant metabolism. This claim is supported, for example, by the following observations: (1) PPFMs are seed-transmitted, (2) PPFMs are frequently found in putatively axenic cell cultures, (3) Low numbers of seed-borne PPFMs correlate with low germinability, (4) Plants with reduced numbers of PPFM show elevated shoot/root ratios, (5) Foliar application of PPFMs to soybean during pod fill enhances seed set and yield, (6) Liverwort tissue in culture requires PPFM-produced vitamin B12 for growth, (7) treated plants to suppress or decrease disease incidence of sheath blight caused by Rhizoctonia solani in rice, and (8) the PPFM inoculation induced number of stomata, chlorophyll concentration and malic acid content, they led to increased photosynthetic activity. Methylobacterium spp. are bacterial symbionts of plants, shown previously to participate in plant metabolism by consuming plant waste products and producing metabolites useful to the plant. There are reports that inform about the beneficial interactions between this group of bacteria and plants. Screening of such kind of bacteria having immense plant growth promoting activities like nitrogen fixation, phytohormone production, alleviating water stress to the plants can be successfully isolated and characterized and integration of such kind of organism in crop production will lead to increased productivity.

Paralytic Shellfish Toxin Profiles of the Dinoflagellate Alexandrium Species Isolated from Benthic Cysts in Jinhae Bay, Korea (진해만산 와편모조류 Alexandrium속 휴면포자 발아체의 마비성패독 조성)

  • KIM Chang-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.364-372
    • /
    • 1995
  • On the outbreak of paralytic shellfish poisoning in April 1993 in most of shellfish harvesting areas in Jinhae Bay, Korea, to clarify the toxin production of causative organism Alexandrium species, 19 axenic clonal isolates established from the benthic resting cysts in three different stations of those culture grounds were subjected to PSP toxin analysis by HPLC. Individual toxin content per cell was highly variable among the strains isolated from a sampling area and originated from an individual cyst. Average toxin contents in those areas revealed higher values of 54-70 fmol/cell. Toxin profiles included C1/C2(epiGTX8/GTX8), GTX1/GTX4 and neoSTX as the major components, and GTX2/GTX3, GTX5, C4, dcSTX and STX as the minor or sporadic ones. neoSTX on the dominant toxins showed not only most diverse compositional changes comprising $5-54 mol\%$ ranges but also no detection on the half of the strains examined, which were implicated in arising of heterogeneity with a genetic trait within a geographical region. When average toxin composition was compared, carbamate toxins comprised large proportions of $57\%,\;54\%\;and\;67\%$ as total toxin in St. 1, St. 2 and St. 4, respectively. These results suggested that an extensive paralytic shellfish toxification in Jinhae Bay could be largely due to the production of highly potent carbamate toxins in the causative dinoflagellate Alexandrium species.

  • PDF