Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts

분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개

  • Munusamy, Madhaiyan (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, Tongmin (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Jai-Joung (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2004.07.21
  • Accepted : 2004.08.06
  • Published : 2004.08.30

Abstract

The non infecting, plant associated bacteria have attracted increased attention for stimulating plant growth and as environmental friendly plant protecting agents. Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. As the leaves of most or all plants harbor PPFMs that utilize leaf methanol as their sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. Although they are not well known, these bacteria are co-evolved, interacting partners in plant metabolism. This claim is supported, for example, by the following observations: (1) PPFMs are seed-transmitted, (2) PPFMs are frequently found in putatively axenic cell cultures, (3) Low numbers of seed-borne PPFMs correlate with low germinability, (4) Plants with reduced numbers of PPFM show elevated shoot/root ratios, (5) Foliar application of PPFMs to soybean during pod fill enhances seed set and yield, (6) Liverwort tissue in culture requires PPFM-produced vitamin B12 for growth, (7) treated plants to suppress or decrease disease incidence of sheath blight caused by Rhizoctonia solani in rice, and (8) the PPFM inoculation induced number of stomata, chlorophyll concentration and malic acid content, they led to increased photosynthetic activity. Methylobacterium spp. are bacterial symbionts of plants, shown previously to participate in plant metabolism by consuming plant waste products and producing metabolites useful to the plant. There are reports that inform about the beneficial interactions between this group of bacteria and plants. Screening of such kind of bacteria having immense plant growth promoting activities like nitrogen fixation, phytohormone production, alleviating water stress to the plants can be successfully isolated and characterized and integration of such kind of organism in crop production will lead to increased productivity.

식물체에 해를 끼치지 않고 식물체와 공생하는 박테리아는 식물의 생장을 촉진 시키며 친환경적 식물 보호제 역할을 함으로서 높은 관심을 받아왔다. Methylobacterium spp.로 분리된 분홍색 색소를 형성하는 methylotrophic bacteria (PPFMS)는 식물의 잎 표면에 서식한다. 거의 모든 식물체의 잎에는 PPFMS를 가지고있으며, Methylobacterium의 특별한 특성을 가진 이들은 탄소와 에너지원으로 잎의 methanol를 이용한다. 비록 이들 박테리아들은 잘 알려 지지 않았지만. 그들은 식물 대사 작용에 영향을 주면서 함께 진화되어 왔다. 이 주장은 다음의 예로 보인 관찰로서 뒷받침 한다. (1) PPFMS는 씨 안에서 발견되고 (2) PPFMS는 자주 무균 세포 배양에서 발견되고 (3) 적은 수의 PPFMS를 지닌 종자는 낮은 발아율을 보였고, (4) 감소된 PPFMS를 가진 식물들은 낮은 줄기/뿌리 비율을 보이고, (5) 콩깍지 형성 시기에 콩잎에 PPFMS의 엽면처리는 종자 수와 생산량을 높이며, (6) 우산이끼를 배양하는데 있어서 PPFM에 의해 생성된 비타민 Rl2는 우산이끼의 생장을 위해 필요하고 (7) 벼에 있어서 Rhizoctonia solani에 인해 나타나는 엽초마름병의 발병률은 PPFMS를 처리한 벼에서 억제되거나 감소되었고, 그리고 (8) PPFM의 종은 기공과 엽록소의 농도, malic acid의 함량을 증가시켜 식물의 광합성 능을 증가시켰다. Methylobacterium spp.은 식물체의 잔사를 이용하거나 식물체에 유용한 대사산물을 생산함으로써 식물의 신진대사에 관여하는 것으로 알려진 공생자이다. 박테리아와 식물체간의 이로운 상호작용에 관해 알려진 많은 보고서들이 있다. 식물체의 수분장애 완화, 광합성호르몬 생산, 그리고 질소고정과 같은 식물의 생장을 촉진시키는 박테리아 종과 같은 선발은 성공적으로 분리 해낼 수 있었고, 작물생산에 있어서 이 같은 미생물의 처리는 생산력을 증가시킬 것이다.

Keywords

Acknowledgement

Supported by : Chungbuk National University

References

  1. Ajitkumar. P., and J. D. Cherayil. 1985. Presence of 2-methylthioribosyl trans-Zeatin in Azotobacter vinelandii tRNA. J. Bacteriol. 162:752-755
  2. Akiyoahi, D. E., D. A. Regier, G. Jen, and M. P. Gordon. 1987. Cytokinin production by Agrobacterium and pseudomonas spp. J. Bacteriol. 169:4242-4248 https://doi.org/10.1128/jb.169.9.4242-4248.1987
  3. Andrews. J. H., and R. F. Harris. 2000. The ecology and biogeography of microorganisms on plant surfaces. Annu. Rev. Phytopathol. 38:145-180 https://doi.org/10.1146/annurev.phyto.38.1.145
  4. Anthony. C. 1982. The biochemistry of methylotrophs. Academic press. Inc., London. UK
  5. Atzorn. R., A. Crozier, C. T. Wheeler. and G. Sandberg. 1988. Production of gibberellins and indole-3-acetic acid by Rhizobium Phaseoil in relation to nodulation of Phaseolus vulgaris roots. Planta 175:522-538
  6. Austin, B., and M. Goodfellow. 1979. Pseudomonas mesophilica, a new species of pink bacteria isolated from leaf surfaces. Int. J. Syst. Bacteriol. 29:373-378 https://doi.org/10.1099/00207713-29-4-373
  7. Avezoux, A., M. G. Goodwin. and C. Anthony. 1995. The role of the novel disulphide ring in the active site of the quinoprotein methanol dehydrigenase from Methylobacterium extorquens. Biochem. J. 307:735-741 https://doi.org/10.1042/bj3070735
  8. Barraquio. W. L., L. Revilla, and J. K. Ladha. 1997. Isolation of cndophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15-24 https://doi.org/10.1023/A:1004246904803
  9. Bartel, B. 1997. Auxin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 18:49-64
  10. Basile, D. V., L. L. Slade, and W. A Corpe. 1969. An association between a bacterium and a liverwort, Scapania nemorosa. Bulletin of the Torrey Botanical Club. 96:6711-6714
  11. Basile. D. V., M. R. Basile. Q. Y. Li. and W. A. corpe. 1985. Vitamin B12 stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflate, Bryologist 88:77-81 https://doi.org/10.2307/3242585
  12. Bassalik, K, 1913. Uber die Verabcitung der oxalsaure durch Bacillus extorquens nov. sp. Jahrb. Wiss. Bot. 53:255-302
  13. Bastian F., A. Cohen. P. Piccoli, V. Luna, R. Baraldi, and R. Bottini. 1998. Production of indole 3-acetic acid and gibberellins Al and A3 by Acetobacter diazotrophicus ane Herbaspirillum seropedicae in chemically-defined culture media. plant Growth Regul. 24:7-11 https://doi.org/10.1023/A:1005964031159
  14. Beattie. G. A., and S. E. Lindow. 1995. The secret life of foliar bacterial pathogens on leaves. Annu. Rev. Phyropathol. 33:145-172 https://doi.org/10.1146/annurev.py.33.090195.001045
  15. Beattie. G. A., and S. E. Lindow. 1999. Bacterial colonization of leaves: a spectrum of strategies. Phytopathology 89:353-359 https://doi.org/10.1094/PHYTO.1999.89.5.353
  16. Breuer. U., J. U. Ackermann, and W. Babel. 1995. Accumulation of poly (3-hydroxybutyric acid) and overproduction of expolysaccharides. Phylopathology 89:353-359
  17. Breuer. U.. J. U. Ackermann, and W. Babel. 1995. Accumulation of poly (3-hydroxybutyric acid) and overproduction of expolysaccharides in a mutant of methylotrophic bacterium. Can, J. Microbiol. 41:55-59 https://doi.org/10.1139/m95-168
  18. Butler, H. K., R. Dadson. and M. A. Holland. 2000. Evidence that trans=-Zeatin riboside produced by a microbial symbiont is physioligically meaningful to its host plant. (abstract available at: http://abstracts.aspb.org/aspp2000/public/P43/0604.html)
  19. Cervantes-Marinez, J., S. Lopez diaz. and B. Podriguez-Garay.2004. Detection of the effects of Methylobacterium in Agave tequilana Weber var. azul by laser induced-fluorescence. plant sci. 166:889-892 https://doi.org/10.1016/j.plantsci.2003.11.029
  20. Chanprame, S., J. J. Todd, and J. M. Widholm. 1996. Prevention of pink pigmented methylotrophic bacteria (Methylobacterium mesophilicum) contamination of plant tissue cultures, plant Cell Report. 16:222-225 https://doi.org/10.1007/BF01890872
  21. Chen, C.. E. M. Bauske. G. Mussan. R. Rodriguez Kabana, and J. W. Klopper. 1995. Biological control of Fusarium wilt on cotton by use of endophytic bacteria, Biological control 5:53-91
  22. Corpe. W. A. 1985. A method for detecting methylotrophic bacteria on solid surfaces. J. Microbiol. Methods 3:215-221 https://doi.org/10.1016/0167-7012(85)90049-1
  23. Corpe, W. A.. and D. V. Basile. 1982. Methanol-utilizing bacteria associated with green plants. Dev. Indust. Microbiol. 23:483-493
  24. Corpe. W. A.. and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. Microbiol. Ecol. 62:243-248 https://doi.org/10.1111/j.1574-6968.1989.tb03698.x
  25. de Vries, G. E., N. Arfman, P. Terpstra, and L. Dijkhuizen. 1992. Cloning expression, and sequence analysis of the Bacillus methanolicus Cl methanol dehydrogenase gene. J. Bacteriol. 174:5346-5353 https://doi.org/10.1128/jb.174.16.5346-5353.1992
  26. Devlin, R. M., P. C. Bhowmik, and S. J. Karczmarczyk. 1994. Influence of methanol on plant growth. plant Growth Regul. Soc. Am. Q. 22:102-108
  27. Dileepdumar, B. S., and H. C. Dube. 1992. seed bacterization with fluorescent Pseudomonas for enhanced plant growth, yield and disease control. Soil Biol Bilchem. 24:539-542 https://doi.org/10.1016/0038-0717(92)90078-C
  28. Dunleavy, J. M. 1988. Curtobacterium plantarum sp.nov. is ubiquitous in plant leaves and is seed transmitted in soybean ane corn. Int. J. Syst. Bacteriol. 39:240-249
  29. Dunleavy, J. M. 1990. Urease production by Methyloabacterium mesophilicum, a seed transmitted bacterium ubiquitous in soybean. Presented at 3rd Biennial Conf. Mol. Cell. Biol. Soybean. July 23-25. Ames. IW. USA
  30. Elbeltagy. A., K. Nishioka. H. Suzuki, T. Sato. Y. I. Sato. H. Morisaki. H. Mitsui. and K. Minamisawa. 2000. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci. Plant Nutr. 46:617-629 https://doi.org/10.1080/00380768.2000.10409127
  31. Fall, R. 1996. Cycling of methanol between plants. methyIotrophs and the atmosphere. p. 343-350. In: M. E. Lidstrom and F. R. Tabita (ed.) Microbial growth on Cl compounds. Kluwer Academic Publishers. The Netherlands
  32. Fall, R., and A. A. Benson. 1996. Leaf methanol-the simplest natural product from plants. Trends plant Sci. 1:296-301 https://doi.org/10.1016/S1360-1385(96)88175-0
  33. Faver, K. L., and T. J. Gerik. 1996. Foliar applied methanol effects on cotton (Gossypium hirsutum L.) gas exchange and growth. Field Crops Res. 47:227-234 https://doi.org/10.1016/0378-4290(96)00024-X
  34. Fisher, G. S., M. G. Legendre, N. V. Lovgren. W. H. Schuller. and J. A. Wells. 1979. Volatile constituents of southempea seeds [Vignaunguiculata (L.) Walp.l. J. Agric. Food Chem. 27:7-11 https://doi.org/10.1021/jf60221a040
  35. Frenkel. C., J. S. Peters. D. M. Tieman. M. E. Tiznado, and A. K. Handa. 1998. Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculenturn) fruit. J. Biol. Chem. 273:4293-4295 https://doi.org/10.1074/jbc.273.8.4293
  36. Freyermuth. S. K., R. L. G. Long. and S. Mathur. 1996. Metabolic aspects of plant interaction with commensal methylotrophs. p. 277-284. In M. E. Lidstrom. and F. R. Tabita (ed.) Microbial growth on Cl compounds. Kluwer Academic publishers, The Netherlands
  37. Frommel. M. I., J. Nowak. and G. Lazarovots. 1993. Treatment of porato tuvers with a growth promoting Pseudomonas sp.: plant growth responses and bacterium distribution in the rhizosphere. Plant Soil 150:51-60 https://doi.org/10.1007/BF00779175
  38. Fukui. Y., and P. V. Doskey. 1998. Air surface exchange of nonmethane organic compounds at a grassland site: seasonal variations and stressed emissions. J. Geophys. Res. 103:13153-13168 https://doi.org/10.1029/98JD00924
  39. Gaffe. F., D. M. Tieman. and A. K. Handa. 1994. pectin methylesterase isoforms in tomato (Lycopersicon esculentum) tissues. Effects of expression of a pectin methylesterase antisense gene. plant physiol. 105:199-203 https://doi.org/10.1104/pp.105.1.199
  40. Galbally, I. E., and W. Kirstine. 2002. The production of methanol by flowering plants and the global cycle of methanol. J. Atmos. Chem. 43:194-229
  41. Gerik, T. J., and K. L. Faver. 1994. Methanol effects on cotton growth and photosynthesis. p. 1328. In proc. Beltwid Cotton Conf. National Cotton Council. Memphis. TN, USA
  42. Goldberg, I., and J. S. Rokem. 1991. Biology of Methylotrophs. Butterworth-Heinemann, Jordan Hill, Oxford, UK
  43. Graham. M. Y., and T. L. Graham. 1991. Rapid accumulation of anionic peroxidases and phenolic polymers in soybean cotyledon tissues following treatment with Phytopthora megasperma f,sp. glycinea wall glucan. Plant Physiol. 97:1445-1456 https://doi.org/10.1104/pp.97.4.1445
  44. Green. P. N., and I. J. Bousifield. 1982. A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J. Gen. Microbiol. 128:623-638
  45. Green. P. N., and I. J. Bousifield. 1981. The taxonomy of pink pigmented facultatively methylotrophic bacteria. P. 285-293. In: Microbial growth Cl compounds. Dalton H. Heyden and Son Ltd., London. UK
  46. Green. P. N., and I. J. Bousifield. 1983. Emendation of Methylobacterium patt, Cole and Hanson 1976, Methylobacterium rhodimum (Heumann 1962) comb. Nov. corig: Methylobacterium radiololerans (Ito and Iizuka 1971). Comb.nov.corrig., and Methylobacterium mesophilicum ( Austin and Goodfellow 1979) comb. nov. Int. J. Syst. Bacteriol. 33:875-877
  47. Gunson. H. E., and P. T. N. Spencer Phillips. 1994. Latent bacterial infections: epiphytes and endophytes as contaminants of micropropagated plants. p. 379-396. In P. J. Lumsden (ed.) Physiology. growth and development of plants in culture. Kluwer Academic Publishers, The Netherlands
  48. Hallmann. J., A. Quadt Hallmann, W. F. Mahaffee. and J. W. Kleopper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43:895-914 https://doi.org/10.1139/m97-131
  49. Ham, K. S., S. Kauffmann. P. Albersheim. and A. G. Darvil. 1991. Host pathogen interactions. XXXIX. A soybean pathogenesis related protein with $\beta{-1,}$3-glucanase activity releases phytoalexin elictor-active heat-stable fragmants from fungal cell walls Mol. Pl. Microbe Interact. 4:545-552 https://doi.org/10.1094/MPMI-4-545
  50. Heitholt. J. J., M. W. van lersel. D. W. Oosterhuis, and R. Wells. 1994. Methanol does not influence water relations. gas exchange. kr growth in cotton. p. 1329. In D. J. Herber. and D. A. Richter (ed.) proc. Beltwide Cotton Prod. Res. Conf.. San Deigo, California, National Cotton Council. Memphis, TN, USA
  51. Higgins, I. J., D. J. Best. R. C. Hammond, and D. Scott. 1981. Methane oxidizing microorganisms, Mictobiol. Pev. 45:556-590
  52. Hirano, S. S., and C. D. Upper. 2000. Bacteria in the leaf ecosystem with emphyre. Microbiol. Mol. Biol. Rev. 64:624-653 https://doi.org/10.1128/MMBR.64.3.624-653.2000
  53. Hirano. S. S.. and C. D. Upper. 1992. Bacteria community dynamics. p. 271-294. In J. H. Andrews and S. S. Hirano (ed.) Microbial ecology of leaves. Springer-Verlag, New York, NY, USA
  54. Hirano. S. S., S. Baker. and C. D. Upper. 1996. Raindrop momentum triggers growth of leaf associated pepulations of Pseudomonas syringae on field grown snap bean plants. Appl. Environ. Mocrobiol. 62:2560-2566
  55. Holland, M. A., R. L. G. Long, and J. C. Polacco. 2002. Methylobacterium spp.: phylloplanc bacteria involved in cross talk with the plant host. p. 125-135. In S. E. Lindow cct al. (ed.) Phyllosphere microbiology. APS Press. St. Paul. MN. USA
  56. Holland. M. A. 1997. Occams razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol. 115:865-868 https://doi.org/10.1104/pp.115.3.865
  57. Holland, M. A., and J. C. Polacco. 1992. Urease-null and hydrogenasc null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants: Plant Physiol. 98:942-948 https://doi.org/10.1104/pp.98.3.942
  58. Holland. M. A., and J. C. Polacco. 1994. PPFMs and other contaminants: Is there more to plant physiology than just plant? Ann. Rev. Plant Physiol. Plant Mol. Biol. 45:197-209 https://doi.org/10.1146/annurev.pp.45.060194.001213
  59. Holland, M. A., and J. C. Polacco. 1996. Seeds. coated or impregnated with a pink pigmented facuptative methylotroph, having improved perminability. Uatent # 5. 512. 069
  60. Holland. M. A., and J. C. Polacco. 2000. Method of altering the metabolism of plant. US Patent # 5, 268.171
  61. Husman, S. H., W. B. McCloskey, and W. T. Molin. 1994. Methanol effects on upland cotton. p. 1295-1296. In D. J. Herber and D. A. Richter. (ed.) Proc. Beltwide Cotton Prod. Res. Conf., San Diego, CA, National Cotton Council. Memphis, TN. USA
  62. Ivanova, E. G., N. V. Doronina, and Y. A. Trotsenko. 2001. Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70:392-397 https://doi.org/10.1023/A:1010469708107
  63. Ivanova, E. G., N. V. Doronina. A. O. Shepelyakovskaya. A. G. Laman. F. A. Brovko. and Y. A. Trorsenko. 2000. Facultative and obligate aerobic methylobacteria synthesize cytokinins. Mikrobiologiya 69:764-769
  64. Jacques. M. A., and C. E. Morris. 1995. A review of issues relared to the quantification of bacteria from the phyllosphere. FEMS Microbiol. Ecol. 18:1-14 https://doi.org/10.1111/j.1574-6941.1995.tb00158.x
  65. Johnson. K. B., and V. O. Stockwell. 1998. Management of fire blight: a case study in microbial ecology. Annu. Rev. Phytopathol. 36:227-248 https://doi.org/10.1146/annurev.phyto.36.1.227
  66. Kinkel, L. L. 1997. Microbial population dynamics on leaves. Annu. Rev. Phytopathol. 35:327-347 https://doi.org/10.1146/annurev.phyto.35.1.327
  67. Kirchhof. G., V. M. Reis, J. I. Baldani. B. Eckert, J. Dobereiner, and A. Hartmann. 1997 Occurrence. physiological and molccular analysis. plant soil 194:45-55 https://doi.org/10.1023/A:1004217904546
  68. Kirstine. W., I. E. Galbally. Y. Ye. and M. A. Hooper. 1998. Emissions of volatile organic compounds (primarily oxygenated species) from pasture. .J. Geophys. Res. 103:10605-10620 https://doi.org/10.1029/97JD03753
  69. Knani. M., W. A. Corpe, and M. Rohmer. 1994. Bacterial hoponoids from ponk pigmented facultative methylotrophs and from green plant surfaces, Microbiology (Reading, UK) 140:2755-2759 https://doi.org/10.1099/00221287-140-10-2755
  70. Knox. J. P., P. J. Linstead. J. King, C. Cooper, and K. Roberts. 1990. Pectin esterification is spatially regulated both within cell walls ane between developing tissues of root apices. Planta 181:512-521
  71. Koenig. R. L., R. O. Morris. and J. C. Polacco. 2002. tRNA is the source of low level trans-zeatin production in Methylobacterium spp. j. Bacteriol. 184:1832-1842 https://doi.org/10.1128/JB.184.7.1832-1842.2002
  72. Lambrecht, M., Y. Okon. A. V. Broek. and J. Vanderleyden. 2000. Indole-3-acetic acid: a reciprocal signaling molecule in bacteria plant interactions. Trends Mictobiol. 8:298-300 https://doi.org/10.1016/S0966-842X(00)01732-7
  73. Lee, H. S., M. Madhaiyan, C. W. Kim. K. H. Lee. S. Seshadri, and R. M. Sa. 2004a. Indication that phytohormones production and N2-fixation by methylotrophic bacteria is physioligically meaningful to early growth of rice seedlings (Otyza sativa L.). p. 99-100. In 66th Autumn meeting of Kordan Society of Soil Science and Fertilizer. Yesan, Korea
  74. Lee, K. H., M. Madhaiyan, C. W. Kim, H. S. Lee, S. Seshadri, and T. M. Sa. 2004b. Screening and characterization of IAA producing methylotrophic bacteria from phyllosphere of different rice (Oryza sativa L.) culrivars. p. 227-228. In 66th Autumn meeting of Kordan Society of Soil Science and Fertilizer. Yesan, Korea
  75. Libbenga, K. R., F. Van Iren. R. J. Bogers, and M. F. Schraag-Lamers. 1973. The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Piswm sativum L. Planta 114:29-39 https://doi.org/10.1007/BF00390282
  76. Lidstrom, M. E. 1992. The acrobic methylotrophic bacteria. p. 431-445. In M. Dworkin (ed.) The Prokaryotes. Springer Verlag, New York, NY, USA
  77. Lilley, A. K., R. S. Hails, J. S. Cory, and M. S. Bailey. 1997. The dispersal and establishment of pscudomonad populations in the phyllosphere of sugar beet by phytophagous caterpillars. FEMS Microbiol. Ecol. 24:151-157 https://doi.org/10.1111/j.1574-6941.1997.tb00431.x
  78. Lindemann. J.. and C. D. Upper. 1985. Aerial dispersal of epiphytic bacteria over bean plants Appl. Environ. Microbiol. 50:1229-1232
  79. Lindow. S. E., and J. H. J. Leveau. 2002. Phyllosphere microbiology. Curr. Opin. Biotechnol. 13:238-243 https://doi.org/10.1016/S0958-1669(02)00313-0
  80. Lindow. S. E., and M. T. Brandl. 2003. Microbiology of the Phyllosphere. Appl. Environ. Microbiol. 63:1875-1883
  81. Liu. L., J. W. Kloepper, and S. Tuzun. 1995. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85:695-698 https://doi.org/10.1094/Phyto-85-695
  82. Long, R., R. Morris, and J. Polacco. 1997. Cytokinin production by plant associated methylotrophic bacteria. Plant Physiol. Abstract No. 1168
  83. MPiga. P., R. R. Belanger. T. C. Paulitz. and N. Benhamou. 1997. Increased resistance to Fusarium oxysporum f.sp.radis lycopersici in tomato plants trated with the endophytic bacterium Pseudomonas fluorescens strain 63 28. Physiol. Mol. Plant Pathol. 50:301-320 https://doi.org/10.1006/pmpp.1997.0088
  84. MacDonald, R., and R. Fall. 1993. Detection of substantial emissions of methanol from plants to the atmosphere. Atmos. Environ. 27A:1709-1713
  85. Madhaiyan. M. 2003. Molecular aspects. diversity and plant interaction of facultative methylotrophs occurring in tropical plants. Ph.D. Dissertation, Tamilnadu Agricultural University, Tamilnadu. India
  86. Madhaiyan. M., and T. M. Sa. 2003. Methylotrophic bacteria: What is their role in the phyllosphere of rice? p. 59-79. In 2003 International symposium on microbial ecology and resources. The Institute of microbial ecology and resources. Mokwon University. Korea
  87. Madhaitan. M., M. Senthilkumar. B. V. Suresh Reddy. S. P. Sundaram. and S. Kannaiyan. 2002a. Urease activity of pink pigmented facultative methylotrophs in rice. p 1-10. In the 9th International symposium on nitrogen fixation with non-legumes, September 1-5. Leuven, Belgium
  88. Madhaiyan. M., M. S. Park. H. S. Lee. C. W. Kim. K. H. Lee. S. Seshadri. and T. M. Sa. 2004a. Phenotypic characterization of mdthylotrophic N2-fixing bacteria isolated from rice (Oryza sativa L.). Korean J. Soil Sci. Fert. 37:46 53
  89. Madhaiyan. M., M. S. Park. K. H. Lee. S. Seshadri. and T. M. Sa. 2003. Diversity of pink pigmented facultative methylotrophs in rice cultivars (Oryza sativa L.) collected from different provinces in Korea. p. 95-96. In Autumn Symposium. Kerean Society of Soil Science and Fertilizer. Boeun. Korea
  90. Madhaiyan. M., S. Poonguzhali. K. Hari. S. Seshadri. S. P. Sundaram. and T. M. Sa. 2004c. Association of methylotrophic bacteria with sugarcane clone Co86032 (Saccharum officinarum L.) improves plant growth and yield. Biol. Fertil. Soils (communication)
  91. Madhaiyan. M., S. Poonguzhali. M. Senthilkumar. S. Seshadri. H. Y. Chung. J. C. Yang. S. P. Sundaram. and T. M. Sa. 2004b. Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot. Bull. Acad. Sin. (accepted)
  92. Madhaiyan. N., S. Poonguzhali. S. P. Sundaram. and T. M. Sa. 2004d. Effects of foliar application of methanol and PPFM on the growth and yield of cotton (Gossypium hitsutum L.) and sugarcane (Saccharum officinarum L.). Field Crop Res. (communicated)
  93. Madhaiyan. M., S. P. Sundaram. and S. Kannaiyan. 2002b. Influence of pink pigmented facultative methylotrophic bacteria on the seedling vigour of maize (Zea mays L.). J. Microbial World 4:117-121
  94. Mangos. T. J., and M. J. Haas. 1997. A spectrophotometric assay for the enzymatc demethoxylation of pectins and the determination of pectinesterase activity. Anal. Biochem. 244:357-366 https://doi.org/10.1006/abio.1996.9908
  95. Marco. P. D. 2004. Methylotrophy versus heterotrophy: a misconception. Microbiology 150:1606-1607 https://doi.org/10.1099/mic.0.27165-0
  96. Mauney, J. R., and T. J. Gerik. 1994. Evaluating methanol usage in Cotton. p. 39-40. Proc. Beltwide Cotton Conf., National Cotton Council of America. Memphis. TN. USA
  97. Maurhofer. M., C. Hase. P. Meuwly. T. P. Metraux. and G. Defago. 1994. Induction of sysremic fesistance of tobacco to tobacco necrosis virus by the root colonezing Pseudomonas fluorescens production. Phytopathology 84:139-146 https://doi.org/10.1094/Phyto-84-139
  98. McFeeters. R. F., and S. A. Armstrong. 1984. Measurement of pectin methylation in plant cell walls. Anal. Biochem. 139:212-217 https://doi.org/10.1016/0003-2697(84)90407-X
  99. Meade. G. P. 1963. Spencer Meade cane sugar handbook. John Wiley & Sons, New York, NY. USA
  100. Meade. G. P., and J. C. P. Chen. 1977, Meade Chen cane sugar handbook. 10th ed., John Wiley and Sons. New York, NY. USA
  101. Morris, C. E., J. M. Monier. and M. A. Jacques. 1997. Methods for observing microbial biofilms directly on leaf surfaces and reconvering rhem for isolation of culturable microorganisms. Appl. Environ. Microbiol. 63:1570-1576
  102. Munsanje, E. M. 1999. Porenrial of a cytokinin-secreting Methylobacterium as biofertilizer in soybean prodution. Ph.D. dissertation. University of Maryland Eastern Shore. Princess Anne. MD. USA
  103. Munsanje, E. M., J. Jahmohan, M. A. Holland. 2000. Foliar applications of a phylloplane bacterium used to enhance coybean yield. (abstract available at: http://abstracts.aspb.org/aspp2000/public/P43/0454.html)
  104. Murrell. J. C., and H. Dalton. 1992. Methane and methanol utilizers. Plenum Press, New York. NY. USA
  105. Nelson, J. M., F. S. Nakayama, H. M. Flint, R. L. Garcia, and G. L. Hart. 1994. Mcthanol treatments on Pima and upland cotton. p. 1341-1342. Proc. Beltwide Cotton Conf, National Cotton Council, Memphis. TN. USA
  106. Nemecek-Marshall, M., R. C. MacDonald. J. J. Franzen. C. L. Wojciechowski, and R. Fall. 1995. Methanol emissin from leaves: enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol. 108:1359-1368 https://doi.org/10.1104/pp.108.4.1359
  107. Nonomura, A. M., and A. A. Benxon. 1992. The path of carbon in photosynthesis: methanol and light. p. 911-914. In N. Murata (ed.) Research in photosynthesis (Vol 3). Kluwer Publications. Dodrecht, Gemanay
  108. Nooden, L. D., Singh, S, and D, S, Letham. 1990. Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiol. 93:33-39 https://doi.org/10.1104/pp.93.1.33
  109. Nursten. H. E. 1970. Volatile compounds: the aroma of fruits. p. 240-267. In A. C. Hulme (ed.) The Biochemistry of fruits and their products. Academic press. New York. NY. USA
  110. Obendorf, R. L., J. L. Koch, R. L. Gorecki. R. A. Amable, and M. T. Aveni. 1990. Methanol accumulation in maturing seeds. J. Exp. Bot. 41:489-495 https://doi.org/10.1093/jxb/41.4.489
  111. Olivares, F. L., V. L. D. Balandi. V. M. Reis. J. I. Baldani. and J. Dobereiner. 1996. Occurrence of the endophytic diazotrophic Herbaspirillum spp. in roots. stem. and leaves, predominantly of Gramineae. Biol. Fertil. Soils 21:197200 https://doi.org/10.1007/BF00335935
  112. Omer. Z. S., R. Tombolini. A. Broberg. and B. Gerhadson. 2004b. Indole-3-acetic acid production by pink pogmented facultative methylotrophic bacteria. Plant Growth Regulation (article in press)
  113. Omer. Z. S., R. Tombolini. and B. Gerhardson. 2004a. plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol. Ecol. 47:319-326 https://doi.org/10.1016/S0168-6496(04)00003-0
  114. Patt. T. E., G. C. Cole. and R. S. Hanson. 1976. Methylobacterium. a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 26:226-229 https://doi.org/10.1099/00207713-26-2-226
  115. Patt. T. E., G. C. Cole. J. Bland, and R. S. Hanson. 1974. Isolation of bacteria that grow on methane and organic compounds as sole source of carborn and energy. J. Bacteriol. 120:955-964
  116. Patten. C. L., and B. R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42:207-220 https://doi.org/10.1139/m96-032
  117. Peter. T. Y., D. M. Jimmy. and L. L. Benjamin. 1998. Preservation of Saccharum spontaneum germplasm in the world collection of sugarcane and related grasses through storage of true seed. TEKTRAN, United States Department of Agriculture. Agricultural Research Service. http://www.nal.usda.gov/ttic/tektran/data/000009/l9/0000091900.html
  118. Peterson. C. M., J. C. Williams. and A. Kuang. 1990. Increased pod set of determinate cultivars of soybean Glycine max with 6benzylaminoputine. Botan. Gazette 151:322-330 https://doi.org/10.1086/337832
  119. Phillips. D. A., and J. G. Torrey. 1972. Studies on cytokinin production by Rhizobium. Plant Phyaiol. 49:11-15 https://doi.org/10.1104/pp.49.1.11
  120. Polacco. J. C., A. K. Judd. J. K. Dybing. and S. R. Cianzio. 1989. A new mutant class of soybean lacks urease in leaves but not in leaf derived callus of in roots. Mol. Gen. Genet. 217:257-262 https://doi.org/10.1007/BF02464890
  121. Polacco. J. C., and M. A. Holland. 1993. Role of urease in plant cells. Int. Rev. of Cytol. 145:65-103 https://doi.org/10.1016/S0074-7696(08)60425-8
  122. Reinhold Hurek. B., and T. Hurek. 1998. Life in grasses: Diazotrophic endophytes. Trend Microbiol. 6:139-144 https://doi.org/10.1016/S0966-842X(98)01229-3
  123. Ren. Y. Y., and C. A. West. 1992. Elicitationof diterpene biosynthesis in rice (Oryza sativa L.) by chitin. Plant Physiol. 9:1169-1178
  124. Salmeron V., M. V. Matrinez-Toledo. and J. Gonzalez Lopez. 1990. Nitrogen fixation and production of auxins gibberellins and ytokinins by an Azotobacter chroococcum srtain isolated from the ot of Zea mays in the presence of insoluble phosphate. emosphere 20:417-422
  125. Schmid, P. S., and W. Feucht, 1980. Tissue specific oxidation of browning of polyphenols by peroxidase in cherry shoots. Gartenbausissenschaft 45:68-73
  126. Schmid. P. S., and W. R. Ullrich. 1994. Differential induction of resistance and enhanced enzyme activities in cucumber and tobacco caused by treatment with various abiotic and biotic inducers. Physiol. Mol. Plant Pathol. 45:291-304 https://doi.org/10.1016/S0885-5765(05)80060-8
  127. Schmidt. J., R. Wingender. M. John. U. Wieneke. and J. Schnell. 1988. Rhizobium meliloti nodA and nodB genes are involved in generating compounds that stimulate mitosis of plant cells. Proc. Natl. Acad. Sci. 85:8578-8582 https://doi.org/10.1073/pnas.85.22.8578
  128. Senthilkumar. M., M. Madhaiyan, S. P. Sundaram, and S. Kannaiyan. 2001. Compatibility of a pink pigmented facultative methylotrophic bacteria with other microorganisms used as bioinoculants. Indian J. Microbiol. 42:339-341
  129. Shepelyakovskaya, A. O., N. V. Doronina. A. G. Laman. F. A. Brovko. and Y. A. Trotsenko. 1999. New data on the ability of acrobic methylotrophic bacteria to synthesize cytokinins. Dokl. Akad. Nauk. 368:555-557
  130. Sinclair, T. R., R. A. Gilbert, R. E. Perdomo. J. M. Ahine, G. Powell and G. Montes. 2004. Sugarcane leaf area development under field conditions in Florida. USA. Field Crop. Res. 88:171-178 https://doi.org/10.1016/j.fcr.2003.12.005
  131. Stebbins. N., M. A. Holland. S. R. Cianzio, and J. C. Polacco. 1991. Genetic tests of the roles of the embryonic urease of soybean. Plant Physiol. 97:1004-1010 https://doi.org/10.1104/pp.97.3.1004
  132. Stoltzfus, J. R., R., So, P. P. Malarvithi. J. K. Ladha, and F. J. de Bruijn. 1997. Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25-36 https://doi.org/10.1023/A:1004298921641
  133. Sturtevant, D. B., and B. J. Taller. 1989. Cytokinin production by Bradyrhizobium japonicum. Plant Physiol. 89:1247-1252 https://doi.org/10.1104/pp.89.4.1247
  134. Sturz. A. V. and B. G. Matheson. 1996. Populations of endophytic bacteria which influence host resistance to Erwinia-induced bacterial soft rot in potato tubers. Plant Soil 184:265-271 https://doi.org/10.1007/BF00010455
  135. Sturz. A. V., B, R. Christie, B. G. Matheson. and J. Nowak. 1997. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliafe and their influence on host growth. Biol. Fertil. Soils 25:13-19 https://doi.org/10.1007/s003740050273
  136. Suresh Reddy, B. V. 2003. Studies on pink pogmented facultative methylotrophs as a new bioinoculant for groundnut (Arachis hypogaea L.). MS Dissertation, Tamilnadu Agricultural University, Tamilnadu. India
  137. Sy. A.,. E Girud, P. Jourand. N. Garcia. A. Willems. P. De Lajudie. Y. Prin. M. Neyra. M. Gills. B. M. Catherine, and B. Dreyful. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix atmospheric nitrogen in symbiosis with legumes. J. Bacteriol. 183:214-220 https://doi.org/10.1128/JB.183.1.214-220.2001
  138. Taller, B. J., and T. Y. Wong. 1989. Cytokinins in Azotobacter vinelandii culture medium. Appl. Environ. Microciol. 55:266-267
  139. Terauchi, T., and M. Matsuoka. 2001. Analysis of the slow growth of sugarcane at the early stage. Proceedings of the Intervational Society of Sugarcane Technologists. 24:149-151
  140. Torisky, R. S., J. D. Griffin, R. L. Yenofsky. and J. C. Polacco. 1994. A single gene (Eu4) encodes the tissue ubiquitous urease of soybean. Mol. Gen. Genet. 242:404-414
  141. van Oersel. M. W., J. J. Heitholt. R. Wells. and D. M. Oosterhuis. 1995. Foliar methanol applications to cotton in the Southeastem United States: Leaf physiology. growth and yield components. Agron. J. 87:1157-1160 https://doi.org/10.2134/agronj1995.00021962008700060020x
  142. Walker. J. C., and P. N. patel. 1964. Splash dispersal and wind as factors in epidemiology of haloblight of bdan. Phytopathology 54:140-141
  143. Walter, M. H. 1992. Regulation of lignification in defense. p. 327-352. In T. Boller and F. Meins (ed.) Genes involved in plant defences. Springer-Verlag, New York, NY, USA
  144. Wang, T. L,. E. A. Wood. and N. J. Brewin. 1982. Growth regulators. Rhizobium. and nodulation in peas. planta 155:350-355 https://doi.org/10.1007/BF00429464
  145. Whittenbury, R., and N. R. Kridg. 1984. Methylococcaceae fam.nov. p. 256-261. In N. R. Kreig and J. G. Holt (ed.) bergey's Manual of Determinative Bacteriology, Vol.1. The Williams and Wilkins Co., Baltimore MD. USA
  146. Williamson, V. M., and C. E. Paquin. 1987. Homology og saccharomyces cerevisiae ADH 4 to an iron activated alcohol dehydrogenase from Zymomonas mobilis. Mol. Gen. Genel. 209:374-381 https://doi.org/10.1007/BF00329668
  147. Wilson, M., S. S. Hirano, and S. E. Lindow. 1999. Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the Ieaf. Appl. Environ. Microbiol. 65:1435-1443
  148. Witzig. S. B., and M. A. Holland. 1998. A microbial symbiont used to alter the nutritional quality of plants. http://www.rycomusa.com/aspp1988147/0297.shtml
  149. Xue. S., P. M. Charest, and S. H. Javaji Hare. 1998. Systemic induction of peroxidases. $\beta{-1,}$3-glucanases, chitinases and resistance in bean plants by binucleate Rhizoctonia species. Phytopathology 88:359-365 https://doi.org/10.1094/PHYTO.1998.88.4.359
  150. Zatman. L. 1981. A search for patterns in methylotrophic pathways. p. 42-54. In H. Dalton (ed.) Microbial growth on Cl compounds, Heyden, London, UK