Acknowledgement
This work was supported by the Korea Research Fellowship Program funded by the Ministry of Science, ICT, and Future Planning (2018H1D3A1A01074888) and by The Korean National Research Resource Center Program (2017M3A9B8069471), through the National Research Foundation of Korea (NRF).
References
- Atanasov, A. G., Zotchev, S. B. and Dirsch, V. M., International Natural Product Sciences Taskforce and Supuran, C. T. 2021. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20:200-216. https://doi.org/10.1038/s41573-020-00114-z
- Boustie, J. and Grube, M. 2005. Lichens-a promising source of bioactive secondary metabolites. Plant Genet. Resour. 3:273-287. https://doi.org/10.1079/PGR200572
- Burkholder, P. R., Evans, A. W., McVeigh, I. and Thornton, H. K. 1944. Antibiotic activity of lichens. Proc. Natl. Acad. Sci. U. S. A. 30:250-255. https://doi.org/10.1073/pnas.30.9.250
- Calcott, M. J., Ackerley, D. F., Knight, A., Keyzers, R. A. and Owen, J. G. 2018. Secondary metabolism in the lichen symbiosis. Chem. Soc. Rev. 47:1730-1760. https://doi.org/10.1039/c7cs00431a
- Candan, M., Yilmaz, M., Tay, T., Erdem, M. and Turk, A. O. 2007. Antimicrobial activity of extracts of the lichen Parmelia sulcata and its salazinic acid constituent. Z. Naturforsch. C J. Biosci. 62:619-621. https://doi.org/10.1515/znc-2007-7-827
- Cankilic, M. Y., Sariozlu, N. Y., Candan, M. and Tay, F. 2017. Screening of antibacterial, antituberculosis and antifungal effects of lichen Usnea florida and its thamnolic acid constituent. Biomed. Res. 28:3108-3113.
- Dayan, F. E. and Romagni, J. G. 2001. Lichens as a potential source of pesticides. Pestic. Outlook 12:229-232. https://doi.org/10.1039/b110543b
- Francolini, I., Norris, P., Piozzi, A., Donelli, G. and Stoodley, P. 2004. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob. Agents Chemother. 48:4360-4365. https://doi.org/10.1128/AAC.48.11.4360-4365.2004
- Ghorbanpour, M., Omidvari, M., Abbaszadeh-Dahaji, P., Omidvar, R. and Kariman, K. 2018. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol. Control 117:147-157. https://doi.org/10.1016/j.biocontrol.2017.11.006
- Goga, M., Elecko, J., Marcincinova, M., Rucova, D., Backorova, M. and Backor, M. 2018. Lichen metabolites: an overview of some secondary metabolites and their biological potential. In: Co-evolution of secondary metabolites, eds. by J. M. Merillon and K. Ramawat, pp. 175-209. Springer, Cham, Switzerland.
- Halama, P. and Van Haluwin, C. 2004. Antifungal activity of lichen extracts and lichenic acids. BioControl 49:95-107. https://doi.org/10.1023/b:bico.0000009378.31023.ba
- Hong, J.-M., Suh, S.-S., Kim, T. K., Kim, J. E., Han, S. J., Youn, U. J., Yim, J. H. and Kim, I.-C. 2018. Anti-cancer activity of lobaric acid and lobarstin extracted from the antarctic lichen Stereocaulon alpnum. Molecules 23:658. https://doi.org/10.3390/molecules23030658
- Honegger, R. 1991. Functional aspects of the lichen symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:533-578. https://doi.org/10.1146/annurev.pp.42.060191.003005
- Huneck, S. 1999. The significance of lichens and their metabolites. Naturwissenschaften 86:559-570. https://doi.org/10.1007/s001140050676
- Ingolfsdottir, K. 2002. Usnic acid. Phytochemistry 61:729-736. https://doi.org/10.1016/S0031-9422(02)00383-7
- Ingolfsdottir, K., Wiedemann, B., Birgisdottir, M., Nenninger, A., Jonsdottir, S. and Wagner, H. 1997. Inhibitory effects of baeomycesic acid from the lichen Thamnolia subuliformis on 5-lipoxygenase in vitro. Phytomedicine 4:125-128. https://doi.org/10.1016/S0944-7113(97)80056-6
- Kim, W., Liu, R., Woo, S., Kang, K. B., Park, H., Yu, Y. H., Ha, H.-H., Oh, S.-Y., Yang, J. H., Kim, H., Yun, S.-H. and Hur, J.- S. 2021. Linking a gene cluster to atranorin, a major cortical substance of lichens, through genetic dereplication and heterologous expression. mBio 12:e0111121. https://doi.org/10.1128/mBio.01111-21
- Kokubun, T., Shiu, W. K. and Gibbons, S. 2007. Inhibitory activities of lichen-derived compounds against methicillinand multidrug-resistant Staphylococcus aureus. Planta Med. 73:176-179. https://doi.org/10.1055/s-2006-957070
- Konig, G. M. and Wright, A. D. 1999. 1H and 13C-NMR and biological activity investigations of four lichen-derived compounds. Phytochem. Anal. 10:279-284. https://doi.org/10.1002/(SICI)1099-1565(199909/10)10:5<279::AID-PCA464>3.0.CO;2-3
- Kowalski, M., Hausner, G. and Piercey-Normore, M. D. 2011. Bioactivity of secondary metabolites and thallus extracts from lichen fungi. Mycoscience 52:413-418. https://doi.org/10.1007/s10267-011-0118-3
- Kwon, Y., Cha, J., Chiang, J., Tran, G., Giaever, G., Nislow, C., Hur, J.-S. and Kwak, Y.-S. 2016. A chemogenomic approach to understand the antifungal action of Lichen-derived vulpinic acid. J. Appl. Microbiol. 121:1580-1591. https://doi.org/10.1111/jam.13300
- Lawrey, J. D. 1986. Biological role of lichen substances. Bryologist 89:111-122. https://doi.org/10.2307/3242751
- Lauterwein, M., Oethinger, M., Belsner, K., Peters, T. and Marre, R. 1995. In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (-)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob. Agents Chemother. 39:2541-2543. https://doi.org/10.1128/AAC.39.11.2541
- Lee, J. G., Lee, D. H., Park, S. Y., Hur, J.-S. and Koh, Y. J. 2001. First report of Diaporthe actinidiae, the causal organism of stem-end rot of kiwifruit in Korea. Plant Pathol. J. 17:110-113.
- Lee, S., Lee, Y., Ha, S., Chung, H. Y., Kim, H., Hur, J.-S. and Lee, J. 2020. Anti-inflammatory effects of usnic acid in an MPTP-induced mouse model of Parkinson's disease. Brain Res. 1730:146642. https://doi.org/10.1016/j.brainres.2019.146642
- Luo, H., Yamamoto, Y., Kim, J. A., Jung, J. S., Koh, Y. J. and Hur, J.-S. 2009. Lecanoric acid, a secondary lichen substance with antioxidant properties from Umbilicaria antarctica in maritime Antarctica (King George Island). Polar Biol. 32:1033-1040. https://doi.org/10.1007/s00300-009-0602-9
- Maciag-Dorszynska, M., Wegrzyn, G. and Guzow-Krzeminska, B. 2014. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiol. Lett. 353:57-62. https://doi.org/10.1111/1574-6968.12409
- Manojlovic, N. T., Vasiljevic, P. J., Maskovic, P. Z., Juskovic, M. and Bogdanovic-Dusanovic, G. 2012. Chemical composition, antioxidant, and antimicrobial activities of lichen Umbilicaria cylindrica (L.) delise (Umbilicariaceae). Evid. Based Complement. Alternat. Med. 2012:452431.
- Melgarejo, M., Sterner, O., Castro, J. V. and Mollinedo, P. 2008. More investigations in potent activity and relationship structure of the lichen antibiotic (+)-usnic acid and its derivate dibenzoylusnic acid. Rev. Bol. Quim. 25:24-29.
- Molnar, K. and Farkas, E. 2010. Current results on biological activities of lichen secondary metabolites: a review. Z. Naturforsch. C J. Biosci. 65:157-173. https://doi.org/10.1515/znc-2010-3-401
- Oh, S.-O., Jeon, H.-S., Lim, K.-M., Koh, Y.-J. and Hur, J.-S. 2006. Antifungal activity of lichen-forming fungi isolated from Korean and Chinese lichen species against plant pathogenic fungi. Plant Pathol. J. 22:381-385. https://doi.org/10.5423/PPJ.2006.22.4.381
- Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125. https://doi.org/10.1016/j.tim.2007.12.009
- Paudel, B., Bhattarai, H. D., Pandey, D. P., Hur, J. S., Hong, S. G., Kim, I.-C. and Yim, J. H. 2012. Antioxidant, antibacterial activity and brine shrimp toxicity test of some mountainous lichens from Nepal. Biol. Res. 45:387-391. https://doi.org/10.4067/S0716-97602012000400010
- Peng, Y., Li, S. J., Yan, J., Tang, Y., Cheng, J. P., Gao, A. J., Yao, X., Ruan, J. J. and Xu, B. L. 2021. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front. Microbiol. 12:670135. https://doi.org/10.3389/fmicb.2021.670135
- Raaijmakers, J. M. and Mazzola, M. 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50:403-424. https://doi.org/10.1146/annurev-phyto-081211-172908
- Rankovic, B. and Misic, M. 2008. The antimicrobial activity of the lichen substances of the lichens Cladonia furcata, Ochrolechia androgyna, Parmelia caperata and Parmelia conspresa. Biotechnol. Biotechnol. Equip. 22:1013-1016. https://doi.org/10.1080/13102818.2008.10817601
- Rizzo, D. M., Lichtveld, M., Mazet, J., Togami, E. and Miller, S. A. 2021. Plant health and its effects on food safety and security in a One Health framework: four case studies. One Health Outlook 3:6. https://doi.org/10.1186/s42522-021-00038-7
- Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N. and Nelson, A. 2019. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3:430-439. https://doi.org/10.1038/s41559-018-0793-y
- Schmeda-Hirschmann, G., Tapia, A., Lima, B., Pertino, M., Sortino, M., Zacchino, S., Arias, A. R. and Feresin, G. E. 2008. A new antifungal and antiprotozoal depside from the Andean lichen Protousnea poeppigii. Phytother. Res. 22:349-355. https://doi.org/10.1002/ptr.2321
- Shrestha, G., Thompson, A., Robison, R. and St Clair, L. L. 2016. Letharia vulpina, a vulpinic acid containing lichen, targets cell membrane and cell division processes in methicillinresistant Staphylococcus aureus. Pharm. Biol. 54:413-418. https://doi.org/10.3109/13880209.2015.1038754
- Stocker-Worgotter, E. 2008. Metabolic diversity of lichenforming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat. Prod. Rep. 25:188-200. https://doi.org/10.1039/B606983P
- Thomashow, L. S., Bonsall, R. F. and Weller, D. M. 1997. Antibiotic production by soil and rhizosphere microbes in situ. In: Manual of environmental microbiology, eds. by C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach and M. V. Walter, pp. 493-499. ASM Press, Washington, DC, USA.
- Wiegand, I., Hilpert, K. and Hancock, R. E. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3:163-175. https://doi.org/10.1038/nprot.2007.521
- Yang, Y., Nguyen, T. T., Jeong, M.-H., Crisan, F., Yu, Y. H., Ha, H.-H., Choi, K. H., Jeong, H. G., Jeong, T. C., Lee, K. Y., Kim, K. K., Hur, J.-S. and Kim, H. 2016. Inhibitory activity of (+)-usnic acid against non-small cell lung cancer cell motility. PLoS One 11:e0146575. https://doi.org/10.1371/journal.pone.0146575
- Yi, S. A., Nam, K. H., Kim, S., So, H. M., Ryoo, R., Han, J.-W., Kim, K. H. and Lee, J. 2019. Vulpinic acid controls stem cell fate toward osteogenesis and adipogenesis. Genes 11:18. https://doi.org/10.3390/genes11010018
- Yilmaz, M., Tay, T., Kivanc, M., Turk, H. and Turk, A. O. 2005. The antimicrobial activity of extracts of the lichen Hypogymnia tubulosa and its 3-hydroxyphysodic acid constituent. Z. Naturforsch. C J. Biosci. 60:35-38. https://doi.org/10.1515/znc-2005-1-207
- Yoshimura, I., Kinoshita, Y., Yamamoto, Y., Huneck, S. and Yamada, Y. 1994. Analysis of secondary metabolites from Lichen by high performance liquid chromatography with a photodiode array detector. Phytochem. Anal. 5:197-205. https://doi.org/10.1002/pca.2800050405