First record of a marine microalgal species, Chlorella gloriosa (Trebouxiophyceae) isolated from the Dokdo Islands, Korea

  • Kang, Nam Seon (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Lee, Jung A (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Jang, Hyeong Seok (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Kim, Kyeong Mi (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Kim, Eun Song (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Yoon, Moongeun (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Hong, Ji Won (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea)
  • Received : 2019.10.10
  • Accepted : 2019.11.11
  • Published : 2019.12.31


Chlorella gloriosa (Chlorellaceae, Trebouxiophyceae) was isolated from seawater off the coast of the Dokdo Islands in Korea. An axenic culture was established using the streak-plate method on f/2 agar media supplemented with antibiotics, allowing identification of the isolate by morphological, molecular, and physiological analyses. The morphological characteristics observed by light and electron microscopy revealed typical morphologies of C. gloriosa species. The molecular phylogenetic inference drawn from the small-subunit 18S rRNA sequence verified that the microalgal strain belongs to C. gloriosa. Additionally, gas chromatography-mass spectrometry analysis showed that the isolate was rich in nutritionally important omega-3 and -6 polyunsaturated fatty acids and high-performance liquid chromatography analysis revealed that the high-value antioxidants lutein and violaxanthin were biosynthesized as accessory pigments by this microalga, with arabinose, galactose, and glucose as the major monosaccharides. Therefore, in this study, a Korean marine C. gloriosa species was discovered, characterized, and described, and subsequently added to the national culture collection.



  1. Ausich RL. 1997. Commercial opportunities for carotenoid production by biotechnology. Pure Appl. Chem. 69:2169-2173.
  2. Bae JH and SB Hur. 2011. Selection of suitable species of Chlorella, Nannochloris, and Nannochloropsis in high-and low-temperature seasons for mass culture of the rotifer Brachionus plicatilis. Fish. Aquat. Sci. 14:323-332.
  3. Beijerinck MW. 1890. Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Bot. Zeitung. 47:725-739, 741-754, 757-768, 781-785.
  4. Bock C, L Krienitz and T Proschold. 2011. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea 11:293-312.
  5. Breuer G, WAC Evers, JH de Vree, DMM Kleinegris, DE Martens, RH Wijffels and PP Lamers. 2013. Analysis of fatty acid content and composition in microalgae. J. Vis. Exp. 80:e50628.
  6. Buscemi S, D Corleo, F Di Pace, M Petroni, A Satriano and G Marchesini. 2018. The effect of lutein on eye and extra-eye health. Nutrients 10:1321.
  7. Butcher RW. 1952. Contributions to knowledge of the smaller marine algae. J. Mar. Biol. Assoc. U.K. 31:175-191.
  8. Calvo-Perez Rodo JD and EA Molinari-Novoa. 2015. A nomenclatural and cultural note on Chlorella peruviana G. Chacon and other species of the genus Chlorella Beij. (Chlorellales, Chlorellaceae). Biologist (Lima) 13:71-74.
  9. Del Campo JA, M Garcia-Gonzalez and MG Guerrero. 2007. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Appl. Microbiol. Biotechnol. 74:1163-1174.
  10. Fama P, B Wysor, WHCF Kooistra and GC Zuccarello. 2002. Molecular phylogeny of the genus Caulerpa (Caulerpales, Chlorophyta) inferred from chloroplast tufA gene. J. Phycol. 38:1040-1050.
  11. Friedl A, E Padouvas, H Rotter and K Varmuza. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544:191-198.
  12. Guillard RRL. 1975. Culture of phytoplankton for feeding marine invertebrates. pp.26-60. In Culture of Marine Invertebrate Animals (Smith WL and MH Chanley eds.). Plenum Press, New York, USA.
  13. Guillard RRL and JH Ryther. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol. 8:229-239.
  14. Guiry MD and GM Guiry. 2019. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.; searched on 29 September 2019.
  15. Hong JW, SW Jo, HW Cho, SW Nam, W Shin, KM Park, KI Lee and HS Yoon. 2015. Phylogeny, morphology, and physiology of Micractinium strains isolated from shallow ephemeral freshwater in Antarctica. Phycol. Res. 3:212-218.
  16. Hu B, H Li, Q Wang, Y Tan, R Chen, J Li, W Ban and L Liang. 2018. Production and utilization of L-arabinose in China. WJET 6:24-36.
  17. Jeromson S, IJ Gallagher, SD Galloway and DL Hamilton. 2015. Omega-3 fatty acids and skeletal muscle health. Mar. Drugs 13:6977-7004.
  18. Kang JX. 2011. Omega-3: A link between global climate change and human health. Biotechnol. Adv. 29:388-390.
  19. Kim MR, JH Kim, DH Kim and OM Lee. 2018. Eight taxa of newly recorded species of Chlorophytes (Chlorophyceae and Trebouxiophyceae, Chlorophyta) in Korea. Korean J. Environ. Biol. 36:277-284.
  20. Kumar S, G Stecher and K Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874.
  21. Liu X, D Zhu, L Sun, Y Gao and C Wang. 2013. Effect of L-arabinose on the postprandial blood glucose and body weight. J. Hyg. Res. 42:295-297.
  22. Mariotti F, D Tome and PP Mirand. 2008. Converting nitrogen into protein-beyond 6.25 and Jones' factors. Crit. Rev. Food Sci. Nutr. 48:177-184.
  23. Martinez-Alberola F, E Barreno, LM Casano, F Gasulla, A Molins and EM del Campo. 2019. Dynamic evolution of mitochondrial genomes in Trebouxiophyceae, including the first completely assembled mtDNA from a lichen-symbiont microalga (Trebouxia sp. TR9). Sci. Rep. 9:8209.
  24. Mehta LR, RH Dworkin and SR Schwid. 2009. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 5:82-92.
  25. O'Donnell K. 1993. Fusarium and its near relatives. pp. 225-233. In The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics (Reynolds DR and JW Taylor eds.). CBA International, Wallingford, UK.
  26. Ortiz-Tena JG, B Ruhmann, D Schieder and V Sieber. 2016. Revealing the diversity of algal monosaccharides: fast carbohydrate fingerprinting of microalgae using crude biomass and showcasing sugar distribution in Chlorella vulgaris by biomass fractionation. Algal Res. 17:227-235.
  27. Piccaglia R, M Marotti and S Grandi. 1998. Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Ind. Crops Prod. 8:45-51.
  28. Raposo MF, AM De Morais and RM De Morais. 2015.Carotenoids from marine microalgae: A valuable natural source for the prevention of chronic diseases. Mar. Drugs 13:5128-5155.
  29. Sanz N, A Garcia-Blanco, A Gavalas-Olea, P Loures and JL Garrido. 2015. Phytoplankton pigment biomarkers: HPLC separation using a pentafluorophenyloctadecyl silica column. Methods Ecol. Evol. 6:1199-1209.
  30. Seri K, K Sanai, N Matsuo, K Kawakubo, C Xue and S Inoue. 1996. L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metab. Clin. Exp. 45:1368-1374.
  31. Soontornchaiboon W, SS Joo and SM Kim. 2012. Anti-inflammatory effects of violaxanthin isolated from microalga Chlorella ellipsoidea in RAW 264.7 macrophages. Biol. Pharm. Bull. 35:1137-1144.
  32. Templeton DW, M Quinn, S Van Wychen, D Hyman and LM Laurens. 2012. Separation and quantification of microalgal carbohydrates. J. Chromatogr. A 1270:225-234.
  33. Torregrosa-Crespo J, Z Montero, J Fuentes, M Reig Garcia-Galbis, I Garbayo, C Vilchez and R Martinez-Espinosa. 2018. Exploring the valuable carotenoids for the large-scale production by marine microorganisms. Mar. Drugs 16:203.
  34. Vechpanich J and A Shotipruk. 2011. Recovery of free lutein from tagetes erecta: Determination of suitable saponification and crystallization conditions. Sep. Sci. Technol. 46:265-271.
  35. Verbruggen H, M Ashworth, ST LoDuca, C Vlaeminck, E Cocquyt, T Sauvage, FW Zechman, DS Littler, MM Littler, F Leliaert and O DeClecrk. 2009. A multi-locus time-calibrated phylogeny of the siphonous green algae. Mol. Phylogenet. Evol. 50:642-653.
  36. Vieira HH, IL Bagatini, CM Guinart and AAH Vieira. 2016. tufA gene as molecular marker for freshwater Chlorophyceae. Algae 31:155-165.
  37. White TJ, T Bruns, S Lee and J Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. In PCR Protocols: A Guide to Methods and Applications (Innis MA, DH Gelfand, JJ Sninsky and TJ White eds.). Academic Press, San Diego, CA, USA.
  38. Yamamoto M, M Fujishita, A Hirata and S Kawano. 2004. Regeneration and maturation of daughter cell walls in the autosporeforming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). J. Plant Res. 117:257-264.
  39. Zapata M and JL Garrido. 1991. Influence of injection conditions in reversed-phase high-performance liquid of chromatography of chlorophylls and carotenoids. Chromatographia 31:589-594.
  40. Zapata M, F Rodriguez and JL Garrido. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: A new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195:29-45.