• Title/Summary/Keyword: artificial potential function

Search Result 78, Processing Time 0.022 seconds

Artificial Intelligent Clothing Embedded Digital Technologies

  • Lim, Ho-Sun;Lee, Duck-Weon;Shim, Woo-Sub
    • Journal of Fashion Business
    • /
    • v.14 no.6
    • /
    • pp.70-83
    • /
    • 2010
  • With the rapid development of science and technology and the increased preference by consumers for high-function products, many products are being developed through the fusion of technologies in different industries. Among such fusion technologies, digital clothing which combines clothing with computer functions is being examined as a new growth item. The objectives of this study are to examine the concept, history, development, and market of intelligent clothing, in order to discuss future directions for the development of digital clothing technology. intelligent clothing (wearable computers) originated in the 1960s from the concept of separating computing equipment and attaching it to the body. This technology was studied intensively from the early 1980s and to the early 1990s. In the late 1990s, studies on wearable computers began to develop intelligent/digital clothing that was more comfortable and beneficial to users. Depending on the user and purpose, intelligent/digital clothing is now being developed and used in diverse industrial areas that include sports, medicine, military, entertainment, daily life, and business. Many experts forecast a huge growth potential for the digital textile/clothing market, and predict the fastest market growth in the field of healthcare/medicine. There exists a need to find solutions for many related technological, economic, and social issues for the steady dissemination and advancement of intelligent/digital clothing in various industries. Further, research should be continued on effective fusion technologies that reflect human sensitivity and that increase user convenience and benefits.

The Inhibition of Melanogenesis Via the PKA and ERK Signaling Pathways by Chlamydomonas reinhardtii Extract in B16F10 Melanoma Cells and Artificial Human Skin Equivalents

  • Lee, Ayeong;Kim, Ji Yea;Heo, Jina;Cho, Dae-Hyun;Kim, Hee-Sik;An, In-Sook;An, Sungkwan;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2121-2132
    • /
    • 2018
  • Abnormal melanin synthesis results in several hyperpigmentary disorders such as freckles, melanoderma, age spots, and other related conditions. In this study, we investigated the anti-melanogenic effects of an extract from the microalgae Chlamydomonas reinhardtii (CE) and potential mechanisms responsible for its inhibitory effect in B16F10, normal human epidermal melanocyte cells, and human skin-equivalent models. The CE extract showed significant dose-dependent inhibitory effects on ${\alpha}$-melanocyte-stimulating, hormone-induced melanin synthesis in cells. Additionally, the CE extract exhibited suppressive effects on the mRNA and protein expression of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2. The CE extract also inhibited the phosphorylation of protein kinase A and extracellular signal-related kinase, which function as upstream regulators of melanogenesis. Using a three-dimensional, reconstructed pigmented epidermis model, the CE-mediated, anti-pigmentation effects were confirmed by Fontana-Masson staining and melanin content assays. Taken together, CE extract can be used as an anti-pigmentation agent.

Optimal SVM learning method based on adaptive sparse sampling and granularity shift factor

  • Wen, Hui;Jia, Dongshun;Liu, Zhiqiang;Xu, Hang;Hao, Guangtao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1110-1127
    • /
    • 2022
  • To improve the training efficiency and generalization performance of a support vector machine (SVM) in a large-scale set, an optimal SVM learning method based on adaptive sparse sampling and the granularity shift factor is presented. The proposed method combines sampling optimization with learner optimization. First, an adaptive sparse sampling method based on the potential function density clustering is designed to adaptively obtain sparse sampling samples, which can achieve a reduction in the training sample set and effectively approximate the spatial structure distribution of the original sample set. A granularity shift factor method is then constructed to optimize the SVM decision hyperplane, which fully considers the neighborhood information of each granularity region in the sparse sampling set. Experiments on an artificial dataset and three benchmark datasets show that the proposed method can achieve a relatively higher training efficiency, as well as ensure a good generalization performance of the learner. Finally, the effectiveness of the proposed method is verified.

Differentiation among stability regimes of alumina-water nanofluids using smart classifiers

  • Daryayehsalameh, Bahador;Ayari, Mohamed Arselene;Tounsi, Abdelouahed;Khandakar, Amith;Vaferi, Behzad
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.489-499
    • /
    • 2022
  • Nanofluids have recently triggered a substantial scientific interest as cooling media. However, their stability is challenging for successful engagement in industrial applications. Different factors, including temperature, nanoparticles and base fluids characteristics, pH, ultrasonic power and frequency, agitation time, and surfactant type and concentration, determine the nanofluid stability regime. Indeed, it is often too complicated and even impossible to accurately find the conditions resulting in a stabilized nanofluid. Furthermore, there are no empirical, semi-empirical, and even intelligent scenarios for anticipating the stability of nanofluids. Therefore, this study introduces a straightforward and reliable intelligent classifier for discriminating among the stability regimes of alumina-water nanofluids based on the Zeta potential margins. In this regard, various intelligent classifiers (i.e., deep learning and multilayer perceptron neural network, decision tree, GoogleNet, and multi-output least squares support vector regression) have been designed, and their classification accuracy was compared. This comparison approved that the multilayer perceptron neural network (MLPNN) with the SoftMax activation function trained by the Bayesian regularization algorithm is the best classifier for the considered task. This intelligent classifier accurately detects the stability regimes of more than 90% of 345 different nanofluid samples. The overall classification accuracy and misclassification percent of 90.1% and 9.9% have been achieved by this model. This research is the first try toward anticipting the stability of water-alumin nanofluids from some easily measured independent variables.

A Research on 3D Texture Production Using Artificial Intelligence Softwear

  • Ke Ma;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.178-184
    • /
    • 2023
  • AI image generation technology has become a popular research direction in the field of AI, which is widely used in the field of digital art and conceptual design, and can also be used in the process of 3D texture mapping. This paper introduces the production process of 3D texture mapping using AI image technology, and discusses whether it can be used as a new way of 3D texture mapping to enrich the 3D texture mapping production process. Two AI deep learning models, Stable Diffusion and Midjourney, were combined to generate high-quality AI textures. Finally, the lmage to material function of substance 3D Sampler was used to convert the AI-generated textures into PBR 3D texture maps. And applied in 3D environment. This study shows that 3D texture maps generated by AI image generation technology can be used in 3D environment, which not only has short production time and high production efficiency, but also has rich changes in map styles, which can be quickly adjusted and modified according to the design scheme. However, some AI texture maps need to be manually modified before they can be used. With the continuous development of AI technology, there will be great potential for further development and innovation of AI-generated image technology in the 3D content production process in the future.

Steady-State Visual Evoked Potential (SSVEP)-based Rehabilitation Training System with Functional Electrical Stimulation (안정상태 시각유발전위 기반의 기능적 전기자극 재활훈련 시스템)

  • Sohn, R.H.;Son, J.;Hwang, H.J.;Im, C.H.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.359-364
    • /
    • 2010
  • The purpose of the brain-computer (machine) interface (BCI or BMI) is to provide a method for people with damaged sensory and motor functions to use their brain to control artificial devices and restore lost ability via the devices. Functional electrical stimulation (FES) is a method of applying low level electrical currents to the body to restore or to improve motor function. The purpose of this study was to develop a SSVEP-based BCI rehabilitation training system with FES for spinal cord injured individuals. Six electrodes were attached on the subjects' scalp ($PO_Z$, $PO_3$, $PO_4$, $O_z$, $O_1$ and $O_2$) according to the extended international 10-20 system, and reference electrodes placed at A1 and A2. EEG signals were recorded at the sampling rate of 256Hz with 10-bit resolution using a BIOPAC system. Fast Fourier transform(FFT) based spectrum estimation method was applied to control the rehabilitation system. FES control signals were digitized and transferred from PC to the microcontroller using Bluetooth communication. This study showed that a rehabilitation training system based on BCI technique could make successfully muscle movements, inducing electrical stimulation of forearm muscles in healthy volunteers.

A Study on Problem Identification and Diagnosis from Virtual Network (가상 네트워크 망으로부터 문제점 식별 및 진단에 관한 연구)

  • Kim, Jeong-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.67-78
    • /
    • 2010
  • Various services such as IPTV, VoIP, multimedia over IP, on-line payment, on-line game, etc. were made possible due to the rapid advance of the network. In order to provide secure and seamless services over the network, the Internet service providers are performing continuous network monitoring using NMS. The main function of NMS is to perform a diagnosis to identify the potential causes of failure from event messages. In this paper, a simulation tool, named as NetDoctor, is presented which is capable of identifying and diagnosing the potential problems in the virtual network, before the network model is constructed. In NetDoctor, a series of various and artificial failure is imposed on the virtual network, and it was analyzed if NetDoctor could identify the problems. The experimental results on virtual network show that the developed tool is very effective in identifying and diagnosing the problems. The presented simulation tool can be used in the design of robust network.

Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer's Disease Detection

  • Chan-Young Park;Minsoo Kim;YongSoo Shim;Nayoung Ryoo;Hyunjoo Choi;Ho Tae Jeong;Gihyun Yun;Hunboc Lee;Hyungryul Kim;SangYun Kim;Young Chul Youn
    • Dementia and Neurocognitive Disorders
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Background and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer's disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer's disease dementia (ADD). Methods: This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma. Results: A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset. Conclusions: Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.

Comparative analysis of activation functions of artificial neural network for prediction of optimal groundwater level in the middle mountainous area of Pyoseon watershed in Jeju Island (제주도 표선유역 중산간지역의 최적 지하수위 예측을 위한 인공신경망의 활성화함수 비교분석)

  • Shin, Mun-Ju;Kim, Jin-Woo;Moon, Duk-Chul;Lee, Jeong-Han;Kang, Kyung Goo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1143-1154
    • /
    • 2021
  • The selection of activation function has a great influence on the groundwater level prediction performance of artificial neural network (ANN) model. In this study, five activation functions were applied to ANN model for two groundwater level observation wells in the middle mountainous area of the Pyoseon watershed in Jeju Island. The results of the prediction of the groundwater level were compared and analyzed, and the optimal activation function was derived. In addition, the results of LSTM model, which is a widely used recurrent neural network model, were compared and analyzed with the results of the ANN models with each activation function. As a result, ELU and Leaky ReLU functions were derived as the optimal activation functions for the prediction of the groundwater level for observation well with relatively large fluctuations in groundwater level and for observation well with relatively small fluctuations, respectively. On the other hand, sigmoid function had the lowest predictive performance among the five activation functions for training period, and produced inappropriate results in peak and lowest groundwater level prediction. The ANN-ELU and ANN-Leaky ReLU models showed groundwater level prediction performance comparable to that of the LSTM model, and thus had sufficient potential for application. The methods and results of this study can be usefully used in other studies.

Application based on Generative AI and Prompt Engineering to Improve Children's Literacy (생성형 AI와 프롬프트 엔지니어링 기반 아동 문해력 향상을 위한 애플리케이션)

  • Soyeon Kim;Hogeon Seo
    • Smart Media Journal
    • /
    • v.13 no.8
    • /
    • pp.26-38
    • /
    • 2024
  • This paper discusses the use of GPT and GPT API for prompt engineering in the development of the interactive smart device lock screen application "Smart Lock," aimed at enhancing literacy among young children and lower-grade elementary and middle school students during critical language development periods. In an era where media usage via smartphones is widespread among children, smartphone-based media is often cited as a primary cause of declining literacy. This study proposes an application that simulates conversations with parents as a tool for improving literacy, providing an environment conducive to literacy enhancement through smartphone use. Generative AI GPT was employed to create literacy-improving problems. Using pre-generated data, situational dialogues with parents were presented, and prompt engineering was utilized to generate questions for the application. The response quality was improved through parameter tuning and function calling processes. This study investigates the potential of literacy improvement education using generative AI through the development process of interactive applications.