References
- Wasmeier C, Hume AN, Bolasco G, Seabra MC. 2008. Melanosomes at a glance. J. Cell Sci. 121: 3995-3999. https://doi.org/10.1242/jcs.040667
- Slominski A, Tobin DJ, Shibahara S, Wortsman J. 2004. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84: 1155-1228. https://doi.org/10.1152/physrev.00044.2003
- Kadekaro AL, Chen J, Yang J, Chen S, Jameson J, Swope VB, et al. 2012. Alpha-melanocyte-stimulating hormone suppresses oxidative stress through a p53-mediated signaling pathway in human melanocytes. Mol. Cancer Res. 10: 778-786. https://doi.org/10.1158/1541-7786.MCR-11-0436
- Passeron T, Mantoux F, Ortonne JP. 2005. Genetic d isorders of pigmentation. Clin. Dermatol. 23: 56-67. https://doi.org/10.1016/j.clindermatol.2004.09.013
- Schallreuter KU, Kothari S, Chavan B, Spencer JD. 2008. Regulation of melanogenesis--controversies and new concepts. Exp. Dermatol. 17: 395-404. https://doi.org/10.1111/j.1600-0625.2007.00675.x
- Naish-Byfield S, Riley PA. 1998. Tyrosinase kinetics: failure of acceleration in oxidation of ring-blocked monohydric phenol substrate. Pigment Cell Res. 11: 94-97. https://doi.org/10.1111/j.1600-0749.1998.tb00716.x
- Chan C-F, Huang C-C, Lee M-Y, Lin Y-S. 2014. Fermented broth in tyrosinase- and melanogenesis inhibition. Molecules 19: 13122-13135. https://doi.org/10.3390/molecules190913122
- Bentley NJ, Eisen T, Goding CR. 1994. Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol. Cell. Biol. 14: 7996-8006. https://doi.org/10.1128/MCB.14.12.7996
- Bonaventure J, Domingues MJ, Larue L. 2013. Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma Res. 26: 316-325. https://doi.org/10.1111/pcmr.12080
- Shibahara S, Yasumoto K, Amae S, Udono T, Watanabe K, Saito H, et al. 2000. Regulation of pigment cell-specific gene expression by MITF. Pigment Cell Res. 13 (Suppl) 8: 98-102. https://doi.org/10.1034/j.1600-0749.13.s8.18.x
- Wang HM, Chen CC, Huynh P, Chang JS. 2015. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 184: 355-362. https://doi.org/10.1016/j.biortech.2014.12.001
- Zhao X, Xue C-H, Li Z-J, Cai Y-P, Liu H-Y, Qi H-T. 2004. Antioxidant and hepatoprotective activities of low molecular weight sulfated polysaccharide from Laminaria japonica. J. Appl. Phycol. 16: 111-115. https://doi.org/10.1023/B:JAPH.0000044822.10744.59
- Kosourov S, Tsygankov A, Seibert M, Ghirardi ML. 2002. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol. Bioeng. 78: 731-740. https://doi.org/10.1002/bit.10254
- Guedes AC, Amaro HM, M alcata FX. 2011. Microalgae as sources of carotenoids. Marine Drugs 9: 625-644. https://doi.org/10.3390/md9040625
- Lee JJ, An S, Kim KB, Heo J, Cho DH, Oh HM, et al. 2016. Extract of Ettlia sp. YC001 exerts photoprotective effects against UVB irradiation in normal human dermal fibroblasts. J. Microbiol. Biotechnol. 26: 775-783. https://doi.org/10.4014/jmb.1509.09067
- Heo J, Shin D-S, Cho K, Cho D-H, Lee YJ, Kim H-S. 2018. Indigenous microalga Parachlorella sp. JD-076 as a potential source for lutein production: optimization of lutein productivity via regulation of light intensity and carbon source. Algal Res. 33: 1-7. https://doi.org/10.1016/j.algal.2018.04.029
- D'Mello S, Finlay G, Baguley B, Askarian-Amiri M. 2016. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 17: E1144. https://doi.org/10.3390/ijms17071144
- Shimoda H, Tanaka J, Shan SJ, Maoka T. 2010. Antipigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. J. Pharm. Pharmacol. 62: 1137-1145. https://doi.org/10.1111/j.2042-7158.2010.01139.x
- Camera E, Mastrofrancesco A, Fabbri C, Daubrawa F, Picardo M, Sies H, et al. 2009. Astaxanthin, canthaxanthin and beta-carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes. Exp. Dermatol. 18: 222-231. https://doi.org/10.1111/j.1600-0625.2008.00790.x
- Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, et al. 2003. UV-induced skin damage. Toxicology 189: 21-39. https://doi.org/10.1016/S0300-483X(03)00150-1
- Fiedor J, Burda K. 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6: 466-488. https://doi.org/10.3390/nu6020466
- Dai J, Mumper RJ. 2010. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15: 7313-7352. https://doi.org/10.3390/molecules15107313
- Rasouli H, Farzaei MH, Khodarahmi R. 2017. Polyphenols and their benefits: a review. Int. J. Food Prop. 20: 1700-1741. https://doi.org/10.1080/10942912.2016.1193515
- Chang T-S. 2009. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 10: 2440-2475. https://doi.org/10.3390/ijms10062440
- Baek Sh, Lee SH. 2015. Sesamol decreases melanin biosynthesis in melanocyte cells and zebrafish: Possible involvement of MITF via the intracellular cAMP and p38/JNK signalling pathways. Exp. Dermatol. 24: 761-766. https://doi.org/10.1111/exd.12765
- Hartman ML, Czyz M. 2015. MITF in melanoma: mechanisms behind its expression and activity. Cell. Mol. Life Sci. 72: 1249-1260. https://doi.org/10.1007/s00018-014-1791-0
- Burger P, Landreau A, Azoulay S, Michel T, Fernandez X. 2016. Skin whitening cosmetics: feedback and challenges in the development of natural skin lighteners. Cosmetics 3: 36. https://doi.org/10.3390/cosmetics3040036
- Bae-Harboe YS, Park HY. 2012. Tyrosinase: a central regulatory protein for cutaneous pigmentation. J. Invest. Dermatol. 132: 2678-2680. https://doi.org/10.1038/jid.2012.324
- Roh E, Yun C-Y, Yun JY, Park D, Kim ND, Hwang BY, et al. 2013. cAMP-binding site of PKA as a molecular target of bisabolangelone against melanocyte-specific hyperpigmented disorder. J. Invest. Dermatol. 133: 1072-1079. https://doi.org/10.1038/jid.2012.425
-
Yun C-Y, Ko SM, Choi YP, Kim BJ, Lee J, Kim JM, et al. 2018.
${\alpha}$ -Viniferin improves facial hyperpigmentation via accelerating feedback termination of cAMP/PKA-signaled phosphorylation circuit in facultative melanogenesis. Theranostics 8: 2031-2043. https://doi.org/10.7150/thno.24385 - Jiang Z, Li S, Liu Y, Deng P, Huang J, He G. 2011. Sesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway. Acta Biochim. Biophys. Sin. 43: 763-770. https://doi.org/10.1093/abbs/gmr078
- Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE. 1998. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391: 298-301. https://doi.org/10.1038/34681
- Imokawa G, Yada Y, Kimura M. 1996. Signalling mechanisms of endothelin-induced mitogenesis and melanogenesis in human melanocytes. Biochem. J. 314 (Pt 1): 305-312. https://doi.org/10.1042/bj3140305
- Ye Y, Wang H, Chu JH, Chou GX, Yu ZL. 2011. Activation of p38 MAPK pathway contributes to the melanogenic property of apigenin in B16 cells. Exp. Dermatol. 20: 755-757. https://doi.org/10.1111/j.1600-0625.2011.01297.x
- Saha B, Singh SK, Sarkar C, Bera R, Ratha J, Tobin DJ, et al. 2006. Activation of the Mitf promoter by lipid-stimulated activation of p38-stress signalling to CREB. Pigment Cell Res. 19: 595-605. https://doi.org/10.1111/j.1600-0749.2006.00348.x
- Yanase H, Ando H, Horikawa M, Watanabe M, Mori T, Matsuda N. 2001. Possible involvement of ERK 1/2 in UVAinduced melanogenesis in cultured normal human epidermal melanocytes. Pigment Cell Res. 14: 103-109. https://doi.org/10.1034/j.1600-0749.2001.140205.x
- Englaro W, Rezzonico R, Durand-Clement M, Lallemand D, Ortonne JP, Ballotti R. 1995. Mitogen-activated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B-16 melanoma cells. J. Biol. Chem. 270: 24315-24320. https://doi.org/10.1074/jbc.270.41.24315
- Kim DS, Hwang ES, Lee JE, Kim SY, Kwon SB, Park KC. 2003. Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. J. Cell Sci. 116: 1699-1706. https://doi.org/10.1242/jcs.00366
- Yoon TJ, Lei TC, Yamaguchi Y, Batzer J, Wolber R, Hearing VJ. 2003. Reconstituted 3-dimensional human skin of various ethnic origins as an in vitro model for studies of pigmentation. Anal. Biochem. 318: 260-269. https://doi.org/10.1016/S0003-2697(03)00172-6
- Kandarova H, Liebsch M, Spielmann H, Genschow E, Schmidt E, Traue D, et al. 2006. Assessment of the human epidermis model SkinEthic RHE for in vitro skin corrosion testing of chemicals according to new OECD TG 431. Toxicol. In Vitro 20: 547-559. https://doi.org/10.1016/j.tiv.2005.11.008
- Kidd DA, Johnson M, Clements J. 2007. Development of an in vitro corrosion/irritation prediction assay using the EpiDerm skin model. Toxicol. In Vitro 21: 1292-1297. https://doi.org/10.1016/j.tiv.2007.08.018
Cited by
- Loganin Inhibits α-MSH and IBMX-induced Melanogenesis by Suppressing the Expression of Tyrosinase in B16F10 Melanoma Cells vol.29, pp.11, 2019, https://doi.org/10.5352/jls.2019.29.11.1200
- Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources vol.25, pp.7, 2018, https://doi.org/10.3390/molecules25071537
- Jeju Magma-Seawater Inhibits α-MSH-Induced Melanogenesis via CaMKKβ-AMPK Signaling Pathways in B16F10 Melanoma Cells vol.18, pp.9, 2018, https://doi.org/10.3390/md18090473
- Antimelanogenesis Effects of Theasinensin A vol.22, pp.14, 2018, https://doi.org/10.3390/ijms22147453
- Evaluation of Anti-Melanogenesis Activity of Enriched Pueraria lobata Stem Extracts and Characterization of Its Phytochemical Components Using HPLC-PDA-ESI-MS/MS vol.22, pp.15, 2018, https://doi.org/10.3390/ijms22158105