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Abstract 

 
To improve the training efficiency and generalization performance of a support vector 
machine (SVM) in a large-scale set, an optimal SVM learning method based on adaptive 
sparse sampling and the granularity shift factor is presented. The proposed method combines 
sampling optimization with learner optimization. First, an adaptive sparse sampling method 
based on the potential function density clustering is designed to adaptively obtain sparse 
sampling samples, which can achieve a reduction in the training sample set and effectively 
approximate the spatial structure distribution of the original sample set. A granularity shift 
factor method is then constructed to optimize the SVM decision hyperplane, which fully 
considers the neighborhood information of each granularity region in the sparse sampling set. 
Experiments on an artificial dataset and three benchmark datasets show that the proposed 
method can achieve a relatively higher training efficiency, as well as ensure a good 
generalization performance of the learner. Finally, the effectiveness of the proposed method is 
verified. 
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1. Introduction  

With the progress of science and technology and the improvement of human management 
level and knowledge level, a large number of data in the real world need to be processed. How 
to deal with massive data mining has become a research hotspot in the field of machine 
learning in recent years. As a typical kernel machine learning method, support vector machine 
(SVM) [1] has been widely applied to many fields such as industrial diagnosis [2], 
medical detection [3], image recognition [4], vehicle communication [5], time series 
prediction [6], et al. By using kernel technique and edge maximization criterion, SVM can 
build optimal decision surface, which has unique advantages in solving small sample, 
nonlinear and high-dimensional pattern recognition. However, the essence of SVM training 
process is a convex quadratic optimization (QP) problem. Given the number of training 
samples is N, the training time complexity is 3( )O N  and the space complexity is at least 

2( )O N , which results in a time-consuming training process under a large-scale data mining 
problems. 

Many methods have been explored to improve SVM training and classification in large 
scale data sets. The typical methods include chunking algorithm [1], decomposition algorithm 
[7], sequential minimum optimization (SMO) algorithm [8], parallel SVM method [9,10], 
however, these methods are highly dependent on the selected working sets, and the partition of 
different working sets has a great impact on the generalization performance of SVM. Random 
down sampling based SVM method [11], clustering based SVM method [12,13] can reduce 
the size of the training sample set, however, the selected samples often can not reflect the 
spatial distribution characteristics of the original sample set, and the generalization 
performance of SVM may be reduced. 

Granular SVM (GSVM) [14-16] is another typical method to optimize the training 
efficiency of SVM. In the existing GSVM methods, the number of initial granules needs to be 
determined in advance, which often leads to the selected granules can not fully reflect the 
distribution structure of the sample space. From a model perspective, how to mine the spatial 
structure features of sample set to construct an appropriate granular structure is worthy of 
further study [17].  

Among the above research methods, the essence of improving SVM training efficiency can 
be regarded as by reducing the size of training set to reduce the complexity of solving 
problems. However, these optimization methods often take the cost of generalization 
performance of SVM, and different training set reduction methods lead to different effects on 
the performance of SVM. Additionally, the optimization of the selected training set and 
hyperplane in most methods needs many iterations, which increases the training burden. For 
large scale data classification problems, improving the training efficiency and ensuring the 
generalization performance of SVM are often a pair of contradictions. 

To effectively improve the performance of SVM under large scale set, based on the above 
research, a SVM learning method based on adaptive sparse sampling and granularity shift 
factor is presented. The main motivation of our work is to improve the training efficiency of 
SVM and effectively ensure the generalization performance of SVM. To achieve this goal, the 
proposed method effectively combines the sampling optimization with SVM hyperplane 
optimization. The goal of sampling optimization is to greatly reduce the size of the training set 
and effectively approximate the spatial distribution structure of the original training set. Then, 
the hyperplane optimization stage aims to overcome the influence of optimal hyperplane offset 
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caused by sampling sparsity. In this way, the training efficiency of SVM can be greatly 
improved, and the generalization performance of SVM can be guaranteed. 

To realize the effective reduction of the original training set, in the process of sampling 
optimization, the potential values of samples in different areas of training sample space are 
measured by potential function density clustering, which can effectively utilize the global 
distribution information of the sample space, and establish Gaussian kernel with different 
parameters to complete the effective coverage of different areas of the training sample space. 
Each coverage generates a sampling sample incrementally, and these sampling samples come 
from different local areas of the original training sample space. In this way, sampling samples 
can be adaptively determined according to the distribution of the original training sample 
space, which overcomes the distortion of the spatial structure caused by insufficient samples in 
the method of random sampling SVM. Compared with the clustering based SVM method, the 
proposed method can overcome the problem that the number of clusters needs to be adjusted 
manually and the scale of subspace coverage is inconsistent. Compared with existing GSVM 
methods, the proposed method can approximate the specific structure of training sample set to 
construct a granular structure. Additionally, the extraction of sampling samples only needs one 
scan of the original training sample set, and the training time of SVM can be further reduced. 

Although the proposed adaptive sampling optimization method has the above advantages, 
compared with the SVM decision surface directly trained by the original sample set, the 
sparsity of sampling samples may cause the SVM classification boundary to deviate to a 
certain extent. To solve this problem, in the stage of hyperplane optimization, the local area 
information of the sampling samples is further considered. By measuring the density of each 
sampling sample region and the mixing degree with heterogeneous samples, a granularity shift 
factor is defined and different granularity shift factors are calculated for different granules. In 
this way, a new convex quadratic optimization is constructed. 

To verify the characteristics of the proposed method, the proposed method is compared 
with other methods on an artificial data set and several benchmark data sets. Experimental 
results show that the proposed method can effectively improve the training efficiency of SVM 
and ensure good generalization performance in the classification of large scale data sets. 

The contribution of this paper can be summarized as follows: 
1) A new sparse sampling method based on potential function density clustering is 

presented, which can generate sparse sampling set adaptively and approximate the spatial 
distribution structure of the original training sample space. 

2) A new granularity shift factor method is constructed and measured by the density of 
each sampling sample region and the mixing degree with heterogeneous samples. It fully 
considers the neighborhood information of the sampling samples, and effectively overcomes 
the influence of decision hyperplane offset caused by sparse sampling. 

3) The adaptive sparse sampling set and granularity shift factor are combined to optimize 
the SVM decision hyperplane, which can achieve relatively higher training efficiency, as well 
as ensure the good generalization performance of the learner. 

2. Related work  
To improve the training efficiency of SVM, Vapnik et al. [1] proposed a chunking algorithm. 
By decomposing the large-scale QP problem to eliminate non-support vectors one by one, the 
storage requirement in the training process is reduced. However, when the number of support 
vectors is large, the amount of chunking data will also increase, which affects the training 
efficiency of the algorithm. Osuna et al. [7] proposed a decomposition based SVM algorithm, 
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which decomposes the QP problem into several smaller scale QP problems by iteratively 
selecting the working set. The working set selected directly affects the convergence 
performance of the algorithm. Sequential minimum optimization algorithm (SMO) [8] selects 
only two samples at a time, and uses heuristic method with a two nested loop to find the 
samples to be optimized, however, the computational cost is too high in judging the optimal 
conditions. In [9,10], the original sample space is divided into different subsets and then 
combined with the parallel SVM algorithm. However, the partition of different subsets will 
still have different effects on the generalization performance of SVM. Different from the 
above methods, the down sampling based SVM method reduces the size of training samples 
by extracting or clustering representative samples from the original sample set to improve the 
training efficiency of SVM. Random down sampling based SVM method [11] and clustering 
based SVM method [12,13] are two typical down sampling SVM methods. The disadvantage 
of the random down sampling based SVM method is the obtained sampling samples often can 
not reflect the spatial distribution characteristics of the original sample set. The clustering 
based SVM method takes the clustering center of the training samples as the new training set 
of SVM, where the number of clustering needs to be determined in advance. Although it can 
greatly reduce the size of the training sample set, these clustering centers often change the 
spatial structure distribution of the original data set, and the generalization performance of 
SVM will be affected.  

To improve the performance of traditional SVM, Tang [14] proposed a granular SVM 
(GSVM) method, which integrates granular computing theory and SVM optimization methods. 
GSVM first establishes a series of information granules in the original sample space, then 
extracts some important information samples from the divided granules for learning, and 
finally fuses the different important information obtained from different granules to get the 
final classifier. GSVM has a significant improvement in the training efficiency of SVM, 
however, the divided granules may lead to the difference of data distribution and reduce the 
generalization performance of SVM. To improve the generalization performance of GSVM, 
the GSVM based on mixed measure [15] maps original samples into the high-dimensional 
space by mercer kernel, and then divides these samples into different granules, and those 
mixed granules are extracted and trained by SVM. The GSVM based on hierarchy tree [16] 
divides the data into some granules by means of hierarchical and dynamic granulation. 
According to the density and radius of the granules, the granules closest to the hyperplane are 
dynamically extracted and re-granulated at the subtle level. Other methods [17-27] of 
optimizing SVM are designed to make SVM more suitable for specific problems. 

3. Method 

3.1 Principle of SVM algorithm 
For the classification problem, the essence of SVM is to find an optimal hyperplane as the 
decision surface under the given training sample set, where the isolated edge between positive 
and negative examples is maximized. Given the training set 1{ , }N

i i ix d  , id  is the pattern 
category label of ix , the hyperplane is optimized by the following optimization problem 

1 1 1
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where i  is the Lagrange multiplier and C is the selected positive parameter. When 0i  , the 
corresponding training samples are support vectors. The above optimization problem can be 
extended by nonlinear mapping of input samples to high-dimensional feature space, and the 
following kernel trick is given as 

( , ) ( ) ( )T
i iK x x x xφ φ= ⋅                                                       (2) 

The corresponding decision boundary of SVM can be expressed as 

1
( ) ( , )

sN

i i i
i

f x sign d K x x bα
=

 
= + 

 
∑                                             (3) 

where Ns is the number of support vectors. 

3.2 Adaptive sparse sampling method based on potential function density 
clustering 
The potential function [28] reflects the influence degree of two vectors in space changing with 
distance. Let x  and y  denote two vectors of the pattern space respectively, and ( , )p x y  
denote the potential function established by the two vectors. According to the description of 
reference [28], a common potential function model is given as follows: 

2

1( , )
1 ( , )

p x y
Td x y

=
+

                        （4） 

where T is a constant; ( , )d x y  represents the distance between x  and y . 
According to the definition of potential function, the mathematical model of potential 

function is introduced into the training sample space, and the learning mechanism of potential 
function density clustering is designed to automatically extract the sampling samples. Given 
the training set 1{( , )}N

i i iB x d == , where id  is the pattern category label related to the sample x  
in B, h

id R∈ , h is the number of pattern categories. Let Bi be the set of eigenvectors labeled di, 
{ , ,..., },iB =

i

i i i
1 2 Nx x x  where Ni is the number of training samples in the i-th pattern categories， 

1
.h

ii
N N

=
=∑

 
Here 1

h
i iB B== ∪ , , . i jB B i j∩ =∅ ∀ ≠  For a pair of sample ( , )i i

u vx x  in Bi, the 

interaction potential between i
ux  and i

vx  is 

2

1( , ) ,     , 1, 2,...
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i i
u v i i

u v
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,                       (5) 

Taking i
vx  as the benchmark sample, the interaction potential of all other samples to i

vx  in 
the i-th pattern categories is accumulated, which can be expressed as 

 
1,

( ) ( , )
iN

u u v
pκ

= ≠

= ∑i i i
v u vx x x

                                                      
(6) 

Thus, the potential value set iκ  in Bi can be obtained, here { ( ), ( ),..., ( )}iκ κ κ κ=
i

i i i
1 2 Nx x x . To 

cover the sample space effectively, the largest potential in iκ  can be chosen and the 
corresponding sample i

px  can be determined, where { ( ), ( ),...( ) m ,ax ( )}κ κ κ κ=
i

i i i i
p 1 2 Nx x x x . The 

sample i
px  can be incorporated into the sparse sampling set. When the initial width is given, a 
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corresponding Gaussian kernel can be established with the center i
px  and the given kernel 

width to cover a local area in the original sample space. Additionally, it is necessary to 
eliminate the sample potential value of the current coverage area as far as possible, so as to 
find a new round of maximum potential value and the corresponding sampling sample. The 
potential updating process is given as follows: 

2
2

1exp( || || ), 1, 2,...( ) ( ) (
2

) ,i
k

v N v pκ κ κ
σ

= − − − = ≠⋅′ i i i i i
v v p v px x x x x

                   
(7)

            
    

 
where ( )κ′ i

vx
 
is the updated sample potential value in Bi, and kσ  is the selected kernel width. 

Here kσ  represents the coverage scale of different local areas in the original training sample 
space, which can be taken a fixed value in the experimental stage. Equation (7) shows that 
when an arbitrary sample i

vx in Bi is closer to the center, its potential value is more offset, when 
it is farther from the center sample, its potential value is less offset due to the attenuation of 
Gaussian kernel function.  When the following inequality is satisfied: 

{ ( ), ( ),..max ., ( )}κ κ κ δ′ ′ ′ >
i

i i i
1 2 Nx x x

                                          (8) 

the proposed method turns to find the next representative sampling sample, where δ  is the 
threshold. In this way, the effective coverage of the sample space is completed step by step. 
Otherwise, the method of adaptive sparse sampling turns to other pattern categories until all 
pattern categories are learned, and finally the sparse sampling set can be constructed.  

Combined with the above description, the adaptive sparse sampling method based on 
potential function clustering is given in Table 1. 

Table 1. Adaptive sparse sampling method based on potential function clustering 
 

Initialize the number of sampling samples 0k = , the sparse sampling set is 'B ={}. Set the initial 
Gauss kernel width σ  and the parameter T. Given the training set 1

h
i iB B==  , { , ,..., }iB =

i

i i i
1 2 Nx x x . 

For each pattern category Bi, do 
1. Use (5) and (6) to calculate the potential value of each sample. 
2. Find the sample i

px  with the maximum potential value. 

3. The sample i
px  is incorporated into the sparse sampling set, where ' ' { }B B← ∪ i

px .

 

4. Use (7) to update each sample potential value in Bi. 
5. Set iteration termination conditions 

 If { ( ), ( ),..max ., ( )}κ κ κ δ′ ′ ′ >
i

i i i
1 2 Nx x x  

         Go to step 2 
    else 
         The learning process of Bi is over. Turn to learn other pattern categories until all pattern categories 

are learned. 
    EndIf

 

3.3 Method of optimizing hyperplane by using granularity shift factor 
In the above adaptive sparse sampling method, the sampling samples are directly extracted 
from different local areas of the original sample space, which can effectively approximate the 
structure distribution of the original sample space, thus ensuring the generalization 
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performance of the learning model. However, compared with the SVM decision surface 
directly trained from the original sample set, the sparsity of the sampling set may cause the 
SVM classification boundary to deviate to a certain extent. To overcome this deficiency, in 
this section, a method of granularity shift factor is designed to correct the hyperplane of SVM. 

In the process of establishing the granularity shift factor, it is necessary to adjust the areas 
covered by different Gaussian kernels in the potential function density clustering to establish 
an appropriate granularity size set. Set that the sampling set is 'B , where sampling samples 
are extracted from each pattern category by the method of potential function density clustering. 
After merging these sampling samples, the total number of sampling samples obtained is M. 
Then, the sampling space is divided into M granules, which can be expressed as 

1 2{ , ,..., }MX X X X= . Here { }
1

i

p

n

i i p
X x

=
= , ni is the number of samples contained in the i-th 

granularity, 
1

.M
ii

n N
=

=∑  Each granularity can be regarded as a super ball, then the optimized 

grain center iµ and radius ir  
are 

1

1 i

p

n
i ip

i

x
n

µ
=

= ∑ , max( )
i

i i ix X
r x µ

∈
= − , respectively. 

To effectively mine the information contained in each granularity, the information entropy 
[29] of granularity is introduced in this work. Let the number of positive and negative samples 
contained iX  is in+  and in− , respectively, i i in n n+ −+ = . The information entropy of iX  is 

 2 2( ) log logi i i i
i

i i i i

n n n n
E X

n n n n

+ + − −

= − −
                                             

(9) 

here 0 ( ) 1iE X≤ ≤ . 
On the basis of granularity information entropy, the purity of iX  can be measured, which is 

inversely proportional to the entropy of iX . Here a negative exponential function is introduced 
to express the granularity purity, which is expressed as 

( )( ) iE X
iP X e−=

                                                            
(10) 

Generally, when the purity of iX  is relatively high, iX  is relatively easy to be divided, then 
the decision hyperplane can be appropriately far away from iX . On the contrary, when the 
purity of iX  is smaller, the proportion of mixed heterogeneous samples in iX  is relatively 
large, which indicates that the area of iX  located is closer to the real decision hyperplane, and 
the decision hyperplane should be appropriately close to iX . 

The density of iX  can be expressed as 

2 2

2 2
1 1

|| || || ||1 1( ) exp exp
2 2

i i
p p

n n
i i i ii

i
p pi i i

x xn
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N n Nr r
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   − −
   = ⋅ − = −
   
   

∑ ∑
                   

 (11) 

If the density of iX  is higher, there will be more samples distributed in the vicinity of this 
region in the testing set. To improve the generalization performance, the decision hyperplane 
should be appropriately far away from iX . 

In combination with granularity purity and granularity density, the granularity shift factor 
iϑ  of iX  was defined as 

( ) ( )i i iP X Xϑ ρ= ⋅                                                    
  
 (12) 
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here 0 1iϑ≤ < . 
The improved soft-interval SVM quadratic optimization problem can be expressed as 

2

, 1

1min  || ||
2

. .   ( ( ) ) 1 ,  1, 2,..., , 0.

M

i ib i
T

i i i i i

C

s t d x b i M

ω
ω ϑξ

ω φ ϑ ξ ξ
=

+

+ ≥ − − = ≥

∑

                            
 (13)

 

where iξ

 

is the relaxation variable and C is the penalty factor. The duality problem is 
expressed as 

1 1 1

1

1max ( ) ( ) ( , )
2

. . 0,0 , 1, 2,..., .

M M M

i i i i j i j i j
i i j

M

i j i i
i

Q d d K x x

s t d C i M

α α α ϑ α α

α α τ

= = =

=
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= ≤ ≤ =

∑ ∑∑

∑
                        

  
 (14)

 
To illustrate the characteristics of this method, Fig. 1 shows the process of generating 

sparse samples by potential function clustering. This process can greatly reduce the size of 
training samples. On this basis, the neighborhood information of each sampled sample is 
further considered to obtain the optimized hyperplane. The SVM optimized method 
combining adaptive sparse sampling with granularity shift factor is given in Table 2.  

3.4 Computational complexity analysis 
In this study, the potential density clustering method is used to construct the sparse sampling 
set, then, a method of granularity shift factor is used to correct the hyperplane of SVM. The 
computational complexity is analyzed as follows: 

(1) Set the number of initial training set be N, and the number of 'B obtained by down 
sampling be M. In the process of incremental construction of sparse sampling set, the label 
information of each category of samples is considered, and the calculation of sample potential 
value needs to traverse all other samples in the current pattern category. Here, the initial 
training sample set is set to contain two pattern categories, and the number of samples in each 
pattern category is N1 and N2, respectively, N1+N2=N. The complexity of calculating sample 
potential value ( )2 2

1 2( 1) ( 1)O N N− + − . On this basis, Gaussian kernels with different 
parameters are established to cover the training sample space, and the computational 
complexity of the sample potential updating process is ( )O M . Combined with the calculation 
of sample space potential and the process of potential updating, the computational complexity 
is ( )2

1 22 2O N N N N M− − + . 
(2) In the process of calculating the granularity shift factor, the number of samples covered 

by each granularity needs to be counted, which needs to traverse all training samples, and the 
computational complexity is ( )O MN . Then, the sparse sampling set 'B  is used for SVM 
training, the computational complexity is ( )3O M .

    



1118                                                                                           Wen et al.: Optimal SVM learning method based on  
adaptive sparse sampling and granularity shift factor 

 
Fig. 1. Schematic diagram of sparse sampling and optimization of SVM hyperplane 

Table 2. SVM based on adaptive sparse sampling with granularity shift factor 

 
Initialize: Given the training set 1{( , )}N

i i iB x d == , set the kernel function of SVM and initial 
parameters. 
1. Use the adaptive sparse sampling algorithm in Table 1 to extract samples from the original training 

set, and the number of sampling samples obtained is M. 
2. Optimize the areas covered by different Gaussian kernels in Table 1 to obtain a series of information 

granules 1 2{ , ,..., }MX X X , where { }
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3. Calculate the purity ( )iP X  and the density ( )iXρ of each information granularity according to (9) - 
(11), then use (12) to calculate the granularity shift factor. 

4. Construct and solve the SVM optimization problem according to (14), and the optimal solution *α  is 

obtained as
1 2
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5. For an arbitrary sample x , the decision hyperplane is constructed as * *: ( ) 0Tf x bω φ⋅ + = ,  optimal 

decision function is obtained 
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can be obtained. 
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Combined with the above analysis, the computational complexity of the proposed method 
is ( )2 3

1 22 2O N N N N M MN M− − + + + . For large scale set, the computational complexity of 

using the original sample set to train SVM directly is ( )3O N . Considering 
M N<< , compared 

with the method of training SVM directly using the original sample set, the training efficiency 
of the proposed method can be greatly improved. 

4. Experimental comparison and analysis 
In this section, the performance of the presented method is evaluated using an artificial dataset, 
namely the Double moon [30] and three benchmark datasets [31] from University of 
California, Irvine (UCI): Credit, Occupancy and Record. The performance of the proposed 
method is compared with a LIBSVM algorithm [32], a random sampling SVM (RM_SVM) 
[11], a clustering SVM (C_SVM) [12], GSVM [14], Granular support vector machine based 
on mixed measure (M_GSVM) [15] and SVM based on hierarchical and dynamical 
granulation (HD_GSVM) [16], respectively. All data samples in each dataset are scaled to [−1, 
1], the parameter of distance weighting factor is set as T=1, the kernel width parameter σ  of 
potential function clustering is set between 0.1 and 0.7, the learning threshold of potential 
function is set as δ =0.001. In each SVM optimization method, the selected kernel function is 
the radial basis function, and the kernel width γ of SVM is taken from the set [0.5, 1, 2], the 
penalty parameter is set to C=1000. For RM_SVM, C_SVM and GSVM, the number of down 
sampling samples is given in advance; For M_GSVM and HD_GSVM, the number of initial 
granules is given first, and then other granules are extracted adaptively and iteratively. For the 
presented method, the number of sampling samples is generated adaptively. The operating 
environment of the experiment was an Intel (R) core i7-9700, 3.00 GHz CPU, 8 G RAM, and 
MATLAB 2013. Each experiment was repeated 10 times. Table 3 provides a description of 
the classification datasets. 

Table 3. Information description of different classification datasets 

Datasets 
Number of 

classes 
Number of 

features 
Number of training 

samples 
Number of 

testing samples  
Double Moon 

Credit 
Occupancy 

     2 
     2  
     2 

            2 
             23 
            5 

    500-2000 
    15000   
    10808 

4000 
20000 
9752 

Record 2 7 20000 104913 

4.1 Double Moon classification problem 
  

 
Fig. 2. Double moon classification dataset 
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(a)                                                  (b)                                                  (c)    

    
(d)                                                     (e)                                                   (f)                                     

Fig. 3. The learning and classification effects of the proposed method. (a) Covering training sample 
space by the method of potential function clustering (b) All the center samples are extracted as the 
adaptive sparse sampling set (c) The generated sparse sample set is used as the training of SVM to 

optimize the hyperplane. (d) The hyperplane is used to classify testing samples (e) Comparison of the 
effect on training set before and after using granularity shift factor (f) Classification effect of the 

corrected hyperplane on the testing set 
 

       
(a)                                                   (b)                                                   (c)   

      
(d)                                                  (e)                                                    (f)   

Fig. 4. Effect of adaptive sparse sampling when the number of training set and σ  change（a）Potential 
function clustering is used to cover the training sample space (N=500, 0.1σ = ) (b) Clustering centers are 
taken as the sparse sampling set (M=102) （c）SVM hyperplane is optimized by the sparse sampling 
set (M=102)（d）Potential function clustering is used to cover the training sample space (N=2000, 

0.15σ = ) (e) Clustering centers are taken as the sparse sampling set (M=65) （f）SVM hyperplane is 
optimized by the sparse sampling set (M=65) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022                                 1121 

Table 4. Performance comparisons of different methods on Double moon dataset (N=2000) 

Methods No. of times to scan 
the training set 

            (C,γ ) No. of sampling 
samples 

Training 
time/s 

Testing 
accuracy/% 

LIBSVM 1           (1000,0.5) -- 329.89 100 
RM_SVM 1 (1000,0.5) 500   20.75 98.57 
C_SVM 
GSVM 
M_GSVM                               
HD_SVM 

        1 
        1 

2 
2 

(1000,0.5) 
(1000,0.5) 
(1000,0.5) 
(1000,0.5) 

100 
100 
82 
76 

16.83 
16.34 
13.63 
13.42 

99.86 
99.72 
99.83 
99.91 

Proposed 
sampling( 0.1σ = )  
Proposed[a]  

0.1σ =  
0.15σ =  
0.2σ =  

1 
 
 
1 
1 
1 

    (1000,0.5) 
 
 

(1000,0.5) 
(1000,0.5) 
(1000,0.5) 

102 
 
 
102 
65 
41 

17.28 
 
 
18.21 
10.65 
8.52 

99.83 
 
 

100 
100 
100 

[a] The combination of adaptive sparse sampling with hyperplane optimization. 
[b] The number of initial granules is given manually, then other granules are extracted adaptively. 
 
In this section, an artificial dataset, namely Double moon is used to evaluate the performance 
of the proposed method graphically. Fig. 2 shows a graphical representation of the Double 
moon classification dataset. Fig. 3 shows the learning and classification effects of the 
proposed method on the Double moon dataset. The proposed adaptive sparse sampling method 
achieves the extraction of different sampling samples by optimizing the coverage of different 
regions of the sample space, so as to generate an optimized sparse sampling set, which can 
greatly reduce the number of training samples and achieve effective approximation of the 
spatial structure features of sample set. However, the sparsity of the sampling set leads to 
the deviation of the hyperplane to a certain extent, this deficiency can be overcome by 
constructing the granularity shift factor, where the information of different local areas in the 
original sample set is taken into account, the decision hyperplane of SVM can be 
furtheroptimized. From the classification effect on the testing set, the generalization 
performance of SVM is improved. 

Fig. 4 shows the effect of adaptive sparse sampling when the number of training set and 
kernel width σ  change. Although the adaptive sparse sampling set generated also changes 
accordingly, it can still effectively approximate the structural distribution of sample space, so 
as to obtain the optimized hyperplane of SVM. This process shows that the proposed adaptive 
sparse sampling method has good adaptability to the sample space. Thus, the effectiveness of 
the proposed method is verified. 

Table 4 shows the performance comparisons of different methods on Double moon dataset. 
When the kernel width σ  change, the proposed sparse sampling method can generate different 
number of samples sampling samples adaptively. When σ  is set too small, the number of 
sparse sampling samples generated is relatively large, and the training time of SVM is slightly 
higher than other optimized SVM methods. However, when σ  is in a certain range, the 
training efficiency of the proposed method outperforms other optimized SVM methods. 
Additionally, the method combining adaptive sparse sampling with granularity shift factor 
improves the generalization performance of the learner. 
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4.2 UCI benchmark classification problems 
Under the UCI benchmark datasets, the performance comparisons of the proposed method and 
other methods are shown in Tables 5-7. Compared with LIBSVM, the training time of the 
proposed method is greatly reduced, and the classification accuracy of the proposed method is 
equivalent to that of LIBSVM. Compared with RM_SVM, GSVM, M_GSVM and HD_SVM, 
the training time and classification accuracy of the proposed method are significantly 
improved. Under the Credit data set, the training efficiency of the proposed method is 
significantly better than those of other methods, and the testing accuracy of the proposed 
method is about 0.8%-4.8% higher than those of other methods. Under the Occupancy data set, 
the training efficiency of the proposed method is better than RM_SVM, GSVM, M_GSVM 
and HD_SVM, and comparable to that  of  C_SVM,  however,  the  testing  accuracy  of  the  

 

Table 5. Performance comparisons of different methods on Credit dataset 

Methods No. of times to scan the 
training set 

(C, γ ) No. of sampling 
samples 

Training 
time/s 

Testing 
accuracy/% 

LIBSVM 1     (1000,1) -- 2695.61 82.52 
RM_SVM 1 (1000,1) 1500 184.57 77.64 
C_SVM 
GSVM 
M_GSVM                               
HD_SVM 

        1 
        1 

4 
4 

(1000,1) 
(1000,1) 
(1000,1) 
(1000,1) 

600 
700 
469 
426 

54.52 
59.93 
62.17 
52.42 

79.72 
80.57 
81.13 
81.68 

Proposed 1 (1000,1) 382 43.63 82.43 
 

Table 6. Performance comparisons of different methods on Occupancy dataset  

Methods No. of times to scan the 
training set 

(C, γ ) No. of sampling 
samples 

Training 
time/s 

Testing 
accuracy/% 

LIBSVM 1     (1000,1) -- 1776.64 80.74 
RM_SVM 1 (1000,1) 2162 359.38 76.92 
C_SVM 
GSVM 
M_GSVM                               
HD_SVM 

        1 
        1 

5 
5 

(1000,0.5) 
(1000,0.5) 
(1000, 0.5) 
(1000, 0.5) 

500 
600 
521 
576 

 35.54 
 43.48 

  46.26 
  49.53 

78.52 
78.68 
79.29 
79.41 

Proposed 1 (1000, 0.5) 359   35.87 80.58 
 

Table 7. Performance comparisons of different methods on Record dataset  

Methods No. of times to scan the 
training set 

(C, γ ) No. of sampling 
samples 

Training 
time/s 

Testing 
accuracy/% 

LIBSVM 1       (1000,2) -- 3842.65 97.64 
RM_SVM 1 (1000,2) 2000 348.53 92.91 
C_SVM 
GSVM 
M_GSVM                               
HD_SVM 

        1 
        1 

4 
4 

  (1000,1) 
  (1000,1) 
  (1000,1) 
  (1000,1) 

400 
600 
428 
416 

 42.67 
 53.31 

   53.89 
   64.25 

95.24 
95.09 
97.32 
97.28 

Proposed 1 (1000,1) 258    42.37 97.41 
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proposed method is about 2% higher than that of C_SVM, and about 1.1%-3.6% higher than 
those of other methods to varying degrees. Under the Record data set, the training efficiency of 
the proposed method is better than those of other methods, and the generalization performance 
of the proposed method is improved to varying degrees.  

Different from other methods, the sparse sampling samples of the proposed method  are 
generated automatically according to the spatial distribution of the original data set. Compared 
with the original training set, the sample size of the sparse sampling set is greatly reduced, thus, 
the training efficiency of the proposed method can be greatly improved. Additionally, the 
granularity shift factor is constructed for the optimization of the SVM decision hyperplane, 
where the neighborhood information of each granularity in the sparse sampling set is further 
considered. The generalization performance of SVM can be guaranteed effectively. 

4.3 Discussion 

4.3.1 Influence of the width σ  on the presented method 
In this work, the kernel width parameter σ  of the potential function cluster determines the 
coverage scale of the training sample space, and then affects the size of the generated sparse 
sampling set. Therefore, the kernel width parameter σ  is discussed here. Tables 8-10 show 
that by adjusting the value of σ , the generated adaptive sparse sampling set also changes, but  
the overall classification performance of the proposed method is relatively stable, which 
shows that the proposed method has good adaptability to the sample space. However, when σ  
is too small, the coverage scale of the proposed method to the sample space is too low, which 
leads to the large scale of the sampling set. For example, in Table 7, when σ =0.2, the training 
efficiency of the proposed method decreases sharply due to too large sparse sampling set. 
Especially when σ =0.1, the scale of the sampling sample set is the same as that of the original 
training sample set, so the proposed method is invalid  and  directly  converted  to  LIBSVM  
 

Table 8. Performance comparison of the proposed method under different σ  on Credit dataset  
σ  No. of down sampling set Training time/s Testing accuracy/% 
0.1 15000 -- 82.52 
0.2 8573 945.41 82.58 
0.3 1652 205.84 82.41 
0.4 753 76.52 82.47 
0.5 382 43.63 82.43 
0.6 
0.7 

275 
224 

36.58 
31.74 

82.26 
81.84 

 

Table 9. Performance comparison of the proposed method under different σ  on Occupancy dataset  
σ  No. of down sampling set Training time/s Testing accuracy/% 
0.1 10800 -- 80.74 
0.2 1467 157.85 80.61 
0.3 715 71.73 80.49 
0.4 463 58.52 80.52 
0.5 359 35.87 80.58 
0.6 
0.7 

226 
184 

28.69 
26.36 

80.24 
79.81 
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Table 10. Performance comparison of the proposed method under different σ  on Record dataset  
σ  No. of down sampling set Training time/s Testing accuracy/% 
0.1 20000 -- 97.64 
0.2 2072 437.64 97.58 
0.3 855 109.53 97.49 
0.4 534 57.49 97.52 
0.5 381 46.18 97.36 
0.6 
0.7 

258 
215 

42.37 
38.76 

97.41 
97.28 

 
directly. Therefore, in practical application, to ensure the effectiveness, σ  should not be too 
low. This is also the main limiting factor of the proposed method. 

4.3.2 The sampling influence of δ value on the presented method 
In this paper, the parameter δ is the learning threshold of potential function density clustering, 
and its value affects the number of sampling samples in each pattern category to a certain 
extent. To effectively extract sampling samples from different local areas of the sample space, 
the parameter δ should be set to an appropriate value to make the potential function density 
clustering algorithm converge, so that the number of sampling samples will remain in a stable 
range. Here, select the occupancy benchmark data set. Fig. 5 shows the number of sampling 
samples generated when δ takes different values. For the convenience of drawing, the value of 
δ is converted logarithmically. When δ is relatively large, e. g., δ=10, the number of samples 
generated is relatively small, indicating that the potential function density clustering algorithm 
can not effectively extract samples from different local areas of the sample space. When the δ 
value is relatively small, e. g., δ = 0.01, the number of sampling samples remains in a stable 
range, which means that the potential function density clustering algorithm can achieve 
convergence. For convenience,  the value of δ in each data set experiment is uniformly set as  δ 
= 0.001. 
 
 

 
Fig. 5. Influence of δ value on the number of sampling samples 
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5. Conclusion 
An optimal SVM learning method combining adaptive sparse sampling and the granularity 
shift factor for large-scale sample sets was presented. The method generalizes the SVM to 
include nonlinear problems in a novel manner. By applying the potential function density 
clustering method, sparse sampling samples can be obtained adaptively in each local area of 
the sample space. By applying the granularity shift factor method, the decision hyperplane of 
the SVM can be corrected in an optimal manner. The presented method only requires one scan 
of the original training sample set, which makes it attractive for large-scale classification 
problems. Experiments on an artificial dataset and three benchmark datasets show that the 
proposed method can obtain good classification results with efficient training efficiency. 

In this study, the granularity shift factor method was used to mine the local area 
information of the samples. For the problem of an unbalanced data classification, the 
combination of a global imbalance and local imbalance of different categories of samples can 
be used as a future research objective to solve the problem of an unbalanced classification. In 
addition, the presented method focuses only on binary classification problems. In view of the 
complexity and diversity of classification problems in practice, multi-class classification, 
sequence sample learning, and semi-supervised learning problems are areas of future research. 
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