• Title/Summary/Keyword: angle sections

Search Result 229, Processing Time 0.019 seconds

Compression strength of pultruded equal leg angle sections

  • Polyzois, D.;Raftoyiannis, I.G.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.541-555
    • /
    • 2000
  • Pultruded cross-sections are always thin-walled due to constraints in the manufacturing process. Thus, the buckling strength determines the overall strength of the member. The elastic buckling of pultruded angle sections subjected to direct compression is studied. The lateral-torsional buckling, very likely to appear in thin-walled cross-sections, is investigated. Plate theory is used to allow for cross-sectional distortion. Shear effects and bending-twisting coupling are accounted for in the analysis because of their significant role. A simplified approach for determining the maximum load of equal leg angle sections under compression is presented. The analytical results obtained in this study are compared to the manufacturer's design guidelines for compression members as well as with the design specifications for steel structural members. Experimental results are obtained for various length specimens of pultruded angle sections. The results presented in this paper correspond to actual pultruded equal leg angle sections being used in civil engineering structures.

Testing, simulation and design of back-to-back built-up cold-formed steel unequal angle sections under axial compression

  • Ananthi, G. Beulah Gnana;Roy, Krishanu;Chen, Boshan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.595-614
    • /
    • 2019
  • In cold-formed steel (CFS) structures, such as trusses, transmission towers and portal frames, the use of back-to-back built-up CFS unequal angle sections are becoming increasingly popular. In such an arrangement, intermediate welds or screw fasteners are required at discrete points along the length, preventing the angle sections from buckling independently. Limited research is available in the literature on axial strength of back-to-back built-up CFS unequal angle sections. The issue is addressed herein. This paper presents an experimental investigation on both the welded and screw fastened back-to-back built-up CFS unequal angle sections under axial compression. The load-axial shortening and the load verses lateral displacement behaviour along with the deformed shapes at failure are reported. A nonlinear finite element (FE) model was then developed, which includes material non-linearity, geometric imperfections and modelling of intermediate fasteners. The FE model was validated against the experimental test results, which showed good agreement, both in terms of failure loads and deformed shapes at failure. The validated FE model was then used for the purpose of a parametric study to investigate the effect of different thicknesses, lengths and, yield stresses of steel on axial strength of back-to-back built-up CFS unequal angle sections. Five different thicknesses and seven different lengths (stub to slender columns) with two different yield stresses were investigated in the parametric study. Axial strengths obtained from the experimental tests and FE analyses were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparisons show that the current DSM is conservative by only 7% on average, while predicting the axial strengths of back-to-back built-up CFS unequal angle sections.

Behaviour and strength of back-to-back built-up cold-formed steel unequal angle sections with intermediate stiffeners under axial compression

  • Gnana Ananthi, G. Beulah;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • In cold-formed steel (CFS) structures, such as trusses, transmission towers and portal frames, the use of back-to-back built-up CFS unequal angle sections are becoming increasingly popular. In such an arrangement, intermediate welds or screw fasteners are required at discrete points along the length, preventing the angle sections from buckling independently. Limited research is available in the literature on axial strength of back-to-back built-up CFS unequal angle sections. The issue is addressed herein. This paper presents an experimental investigation reported by the authors on back-to-back built-up CFS unequal angle sections with intermediate stiffeners under axial compression. The load-axial shortening behaviour along with the deformed shapes at failure are reported. A nonlinear finite element (FE) model was then developed, which includes material non-linearity, geometric imperfections and modelling of intermediate fasteners. The FE model was validated against the experimental test results, which showed good agreement, both in terms of failure loads and deformed shapes at failure. The validated finite element model was then used for the purpose of a parametric study comprising 96 models to investigate the effect of longer to shorter leg ratios, stiffener provided in the longer leg, thicknesses and lengths on axial strength of back-to-back built-up CFS unequal angle sections. Four different thicknesses and seven different lengths (stub to slender columns) with three overall widths to the overall depth (B/D) ratios were investigated in the parametric study. Axial strengths obtained from the experimental tests and FE analyses were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparisons show that the current DSM is conservative by only 7% and 5% on average, while predicting the axial strengths of back-to-back built-up CFS unequal angle sections with and without the stiffener, respectively.

Experimental and numerical investigations on axial strength of back-to-back built-up cold-formed steel angle columns

  • Ananthi, G. Beulah Gnana;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.601-615
    • /
    • 2019
  • In cold-formed steel (CFS) structures, such as trusses, wall frames and columns, the use of back-to-back built-up CFS angle sections are becoming increasingly popular. In such an arrangement, intermediate fasteners are required at discrete points along the length, preventing the angle-sections from buckling independently. Limited research is available in the literature on the axial strength of back-to-back built-up CFS angle sections. The issue is addressed herein. This paper presents the results of 16 experimental tests, conducted on back-to-back built-up CFS screw fastened angle sections under axial compression. A nonlinear finite element model is then described, which includes material non-linearity, geometric imperfections and explicit modelling of the intermediate fasteners. The finite element model was validated against the experimental test results. The validated finite element model was then used for the purpose of a parametric study comprising 66 models. The effect of fastener spacing on axial strength was investigated. Four different cross-sections and two different thicknesses were analyzed in the parametric study, varying the slenderness ratio of the built-up columns from 20 to 120. Axial strengths obtained from the experimental tests and finite element analysis were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparison showed that the DSM is over-conservative by 13% on average. This paper has therefore proposed improved design rules for the DSM and verified their accuracy against the finite element and test results of back-to-back built-up CFS angle sections under axial compression.

Effect of angle stiffeners on the flexural strength and stiffness of cold-formed steel beams

  • Dar, M. Adil;Subramanian, N.;Rather, Amer I.;Dar, A.R.;Lim, James B.P.;Anbarasu, M.;Roy, Krishanu
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.225-243
    • /
    • 2019
  • Cold-formed steel (CFS) sections when used as primary load carrying members often require additional strengthening for retrofitting purposes. In some cases, it is also necessary to reduce deflections in order to satisfy serviceability requirements. The introduction of angle sections, screwed to the webs so as to act as external stiffeners, has the potential to both increase flexural strength as well as reduce deflections. This paper presents the results of ten four-point bending tests, on built-up CFS sections, both open and closed, with different stiffening arrangements. In the laboratory tests, the stiffening arrangements increased the moment capacity and stiffness of the CFS beams by up to 85% and 100% respectively. The increase in moment capacity was more evident for the open sections, while that reduction in deflection was largest for the closed sections.

The reinterpretation and visualization about trisecting general angle in Medieval Islam using conic sections (원뿔곡선을 이용한 중세 이슬람의 일반각의 3등분문제의 재조명과 시각화)

  • Kim, Hyang Sook;Kim, Mi Yeoun;Park, Jae Hyun
    • East Asian mathematical journal
    • /
    • v.35 no.2
    • /
    • pp.141-161
    • /
    • 2019
  • The purpose of this paper is to reinterpret and visualize the trisection line construction of general angle in the Medieval Islam using conic sections. The geometry field in the current 2015 revised Mathematics curriculum deals mainly with the more contents of analytic geometry than logic geometry. This study investigated four trisecting problems shown by al-Haytham, Abu'l Jud, Al-Sijzī and Abū Sahl al-Kūhī in Medieval Islam as one of methods to achieve the harmony of analytic and logic geometry. In particular, we studied the above results by 3 steps(analysis, construction and proof) in order to reinterpret and visualize.

Experimental and numerical identification of flutter derivatives for nine bridge deck sections

  • Starossek, Uwe;Aslan, Hasan;Thiesemann, Lydia
    • Wind and Structures
    • /
    • v.12 no.6
    • /
    • pp.519-540
    • /
    • 2009
  • This paper presents the results of a study into experimental and numerical methods for the identification of bridge deck flutter derivatives. Nine bridge deck sections were investigated in a water tunnel in order to create an empirical reference set for numerical investigations. The same sections, plus a wide range of further sections, were studied numerically using a commercially available CFD code. The experimental and numerical results were compared with respect to accuracy, sensitivity, and practical suitability. Furthermore, the relevance of the effective angle of attack, the possible assessment of non-critical vibrations, and the formulation of lateral vibrations were studied. Selected results are presented in this paper. The full set of raw data is available online to provide researchers and engineers with a comprehensive benchmarking tool.

Utilization of Light Microscopy and FFT for MFA Measurement from Unstained Sections of Red Pine (Pinus Densiflora)

  • Kwon, Ohkyung;Lee, Mi-Rim;Eom, Chang-Deuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.399-405
    • /
    • 2013
  • This study demonstrates the utilization of light microscopy and Fast Fourier Transform-Peak Finding (FPF) method for microfibril angle (MFA) measurement from unstained sections of red pine (Pinus densiflora). To obtain an image with optimal contrast and resolution for MFA measurement, effects of numerical aperture (NA) of condenser lens and color filters were investigated. About 60% of NA of the maximum condenser NA produced an image with optimal contrast, but a color filter with short wavelength range (DAPI) created images with improved resolution. Manual angle measurement and the FPF method were applied to the image with optimal contrast for MFA measurement. The experimental results from the FPF method were considered to be more repeatable and less subjective than those from the manual angle measurement.

The Comparison of Muscle Activity in 4 Sections of Rectus Abdominis by The Distance of The Shoulder Width and The Angle of The Elbow Joint in The Position of Push-Up (푸시 업 자세 시 팔굽관절 각도와 어깨넓이 간격에 따른 구획별 4 배 곧은근 근활성도 비교)

  • Moon, Kyo Hoon;Kim, Kyung Hun
    • Journal of Korean Physical Therapy Science
    • /
    • v.24 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • Background; This study was to investigate effects of distance of muscle activity of 4 sections of rectus abdominis(RS-RA, LS-RA, RI-RA, LI-RA) by the shoulder width(x0.5, x1.0, x1.5) and the angle of the elbow joint($0^{\circ}$, $45^{\circ}$, $90^{\circ}$) Method : This study was conducted on 20 healthy male and 20 female adult. respectively, elbow joints were maintained at $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ flex postures on The shoulder width is 0.5, 1.0, and 1.5 times. at the same time 4 sections of rectus abdominis were measured using EMG with maintaining isometric contraction of the rectus abdominis for 5 seconds. Results; The results were as follows: First, muscle activity of 4 sections of rectus abdominis(RS-RA, LS-RA, RI-RA, LI-RA) by angle of the elbow joint($0^{\circ}$, $45^{\circ}$, $90^{\circ}$) was a statistically significant(p<0.05), Second, muscle activity of 4 sections of rectus abdominis(RS-RA, LS-RA, RI-RA, LI-RA) by the shoulder width(x0.5, x1.0, x1.5) was a statistically non-significant Conclusion; It was found to be most effective to perform arm posture with rectus abdominis muscle strength exercise.

  • PDF

A Study on Side Slope Determination of Earth Dam (EARTH DAM의 비탈면 기울기 결정에 관한 연구)

  • 이원희;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.1
    • /
    • pp.86-102
    • /
    • 1981
  • The soil test data of 28 earth dams, scheduled to be constructed in Kore3, were selected for this study. The safety factors of their side slops were computed using Fellenius' "slice Method" by computer. The results summarized in this study are as follows; 1. Dam sections can be easily determined by fig.10 without a time consuming trial and error calculations of assumed sections. 2. For the economical design of earth dam sections, it was found that more cohesive soil was suitable for lower dams(dam height less than 25m) and soils with a higher friction angle was better for higher dams 3. In the case that used soil materials have the same Internal friction angle, side slope increase was almost same. 4. The relationship between side slope and friction angle was found as log.S=a tan ø+b (Fig. 7) 5. The relationship between side slope and cohesion (c) was also found as log. S=a c+b (Fig. 8) 6. The change of safety factors due to the change of central core materials was very little (Table-2) 7. The decrease of safety factors according to the unit weight increase of embankment materials was negligible. 8. In general the relationship between the wet unit weight and the saturated unit weight was r sat = (rt)$^2$+0. 140. This study will contribute to the determination of economic and safe planning and designing of earth dams, embankments and cutting side slopes.

  • PDF