• Title/Summary/Keyword: analytic conditional Fourier-Feynman transform

Search Result 12, Processing Time 0.023 seconds

CONDITIONAL GENERALIZED FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ON A BANACH ALGEBRA

  • Chang, Seung-Jun;Choi, Jae-Gil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.73-93
    • /
    • 2004
  • In [10], Chang and Skoug used a generalized Brownian motion process to define a generalized analytic Feynman integral and a generalized analytic Fourier-Feynman transform. In this paper we define the conditional generalized Fourier-Feynman transform and conditional generalized convolution product on function space. We then establish some relationships between the conditional generalized Fourier-Feynman transform and conditional generalized convolution product for functionals on function space that belonging to a Banach algebra.

A CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT WITH CHANGE OF SCALES ON A FUNCTION SPACE I

  • Cho, Dong Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.687-704
    • /
    • 2017
  • Using a simple formula for conditional expectations over an analogue of Wiener space, we calculate a generalized analytic conditional Fourier-Feynman transform and convolution product of generalized cylinder functions which play important roles in Feynman integration theories and quantum mechanics. We then investigate their relationships, that is, the conditional Fourier-Feynman transform of the convolution product can be expressed in terms of the product of the conditional FourierFeynman transforms of each function. Finally we establish change of scale formulas for the generalized analytic conditional Fourier-Feynman transform and the conditional convolution product. In this evaluation formulas and change of scale formulas we use multivariate normal distributions so that the orthonormalization process of projection vectors which are essential to establish the conditional expectations, can be removed in the existing conditional Fourier-Feynman transforms, conditional convolution products and change of scale formulas.

CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONDITIONAL CONVOLUTION PRODUCTS

  • Park, Chull;David Skoug
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.61-76
    • /
    • 2001
  • In this paper we define the concept of a conditional Fourier-Feynman transform and a conditional convolution product and obtain several interesting relationships between them. In particular we show that the conditional transform of the conditional convolution product is the product of conditional transforms, and that the conditional convolution product of conditional transforms is the conditional transform of the product of the functionals.

  • PDF

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT OVER WIENER PATHS IN ABSTRACT WIENER SPACE: AN Lp THEORY

  • Cho, Dong-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.265-294
    • /
    • 2004
  • In this paper, using a simple formula, we evaluate the conditional Fourier-Feynman transforms and the conditional convolution products of cylinder type functions, and show that the conditional Fourier-Feynman transform of the conditional convolution product is expressed as a product of the conditional Fourier-Feynman transforms. Also, we evaluate the conditional Fourier-Feynman transforms of the functions of the forms exp {$\int_{O}^{T}$ $\theta$(s,$\chi$(s))ds}, exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))ds}$\Phi$($\chi$(T)), exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))d${\zeta}$(s)}, exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))d${\zeta}$(s)}$\Phi$($\chi$(T)) which are of interest in Feynman integration theories and quantum mechanics.

A TIME-INDEPENDENT CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.179-200
    • /
    • 2013
  • Let $C[0,t]$ denote the function space of all real-valued continuous paths on $[0,t]$. Define $X_n:C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ by $Xn(x)=(x(t_0),x(t_1),{\cdots},x(t_n))$, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n$ < $t$ is a partition of $[0,t]$. In the present paper, using a simple formula for the conditional expectation given the conditioning function $X_n$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions which have the form $$f((v_1,x),{\cdots},(v_r,x))\;for\;x{\in}C[0,t]$$, where {$v_1,{\cdots},v_r$} is an orthonormal subset of $L_2[0,t]$ and $f{\in}L_p(\mathbb{R}^r)$. We then investigate several relationships between the conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions.

RELATIONSHIPS BETWEEN INTEGRAL TRANSFORMS AND CONVOLUTIONS ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.51-71
    • /
    • 2013
  • In the present paper, we evaluate the analytic conditional Fourier-Feynman transforms and convolution products of unbounded function which is the product of the cylinder function and the function in a Banach algebra which is defined on an analogue o Wiener space and useful in the Feynman integration theories and quantum mechanics. We then investigate the inverse transforms of the function with their relationships and finally prove that th analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions, can be expressed in terms of the product of the conditional Fourier-Feynman transforms of each function.

CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS OF UNBOUNDED FUNCTIONS ON A GENERALIZED WIENER SPACE

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1105-1127
    • /
    • 2013
  • Let C[0, $t$] denote the function space of real-valued continuous paths on [0, $t$]. Define $X_n\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ and $X_{n+1}\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+2}$ by $X_n(x)=(x(t_0),x(t_1),{\ldots},x(t_n))$ and $X_{n+1}(x)=(x(t_0),x(t_1),{\ldots},x(t_n),x(t_{n+1}))$, respectively, where $0=t_0 <; t_1 <{\ldots} < t_n < t_{n+1}=t$. In the present paper, using simple formulas for the conditional expectations with the conditioning functions $X_n$ and $X_{n+1}$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transforms and the conditional convolution products of the functions, which have the form $fr((v_1,x),{\ldots},(v_r,x)){\int}_{L_2}_{[0,t]}\exp\{i(v,x)\}d{\sigma}(v)$ for $x{\in}C[0,t]$, where $\{v_1,{\ldots},v_r\}$ is an orthonormal subset of $L_2[0,t]$, $f_r{\in}L_p(\mathbb{R}^r)$, and ${\sigma}$ is the complex Borel measure of bounded variation on $L_2[0,t]$. We then investigate the inverse conditional Fourier-Feynman transforms of the function and prove that the analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions can be expressed by the products of the analytic conditional Fourier-Feynman transform of each function.

CONDITIONAL FORUIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT FOR A VECTOR VALUED CONDITIONING FUNCTION

  • Kim, Bong Jin
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.239-247
    • /
    • 2022
  • Let C0[0, T] denote the Wiener space, the space of continuous functions x(t) on [0, T] such that x(0) = 0. Define a random vector $Z_{\vec{e},k}:C_0[0,\;T] {\rightarrow}{\mathbb{R}}^k$ by $$Z_{\vec{e},k}(x)=({\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;e_1(t)dx(t),\;{\ldots},\;{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;ek(t)dx(t))$$ where ej ∈ L2[0, T] with ej ≠ 0 a.e., j = 1, …, k. In this paper we study the conditional Fourier-Feynman transform and a conditional convolution product for a cylinder type functionals defined on C0[0, T] with a general vector valued conditioning functions $Z_{\vec{e},k}$ above which need not depend upon the values of x at only finitely many points in (0, T] rather than a conditioning function X(x) = (x(t1), …, x(tn)) where 0 < t1 < … < tn = T. In particular we show that the conditional Fourier-Feynman transform of the conditional convolution product is the product of conditional Fourier-Feynman transforms.

CHANGE OF SCALE FORMULAS FOR CONDITIONAL WIENER INTEGRALS AS INTEGRAL TRANSFORMS OVER WIENER PATHS IN ABSTRACT WIENER SPACE

  • Cho, Dong-Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.91-109
    • /
    • 2007
  • In this paper, we derive a change of scale formula for conditional Wiener integrals, as integral transforms, of possibly unbounded functions over Wiener paths in abstract Wiener space. In fact, we derive the change of scale formula for the product of the functions in a Banach algebra which is equivalent to both the Fresnel class and the space of measures of bounded variation over a real separable Hilbert space, and the $L_p-type$cylinder functions over Wiener paths in abstract Wiener space. As an application of the result, we obtain a change of scale formula for the conditional analytic Fourier-Feynman transform of the product of the functions.

CONDITIONAL INTEGRAL TRANSFORMS AND CONVOLUTIONS OF BOUNDED FUNCTIONS ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.323-342
    • /
    • 2013
  • Let $C[0,t]$ denote the function space of all real-valued continuous paths on $[0,t]$. Define $Xn:C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ and $X_{n+1}:C[0,t]{\rightarrow}\mathbb{R}^{n+2}$ by $X_n(x)=(x(t_0),x(t_1),{\cdots},x(t_n))$ and $X_{n+1}(x)=(x(t_0),x(t_1),{\cdots},x(t_n),x(t_{n+1}))$, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n$ < $t_{n+1}=t$. In the present paper, using simple formulas for the conditional expectations with the conditioning functions $X_n$ and $X_{n+1}$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transforms and the conditional convolution products of the functions which have the form $${\int}_{L_2[0,t]}{{\exp}\{i(v,x)\}d{\sigma}(v)}{{\int}_{\mathbb{R}^r}}\;{\exp}\{i{\sum_{j=1}^{r}z_j(v_j,x)\}dp(z_1,{\cdots},z_r)$$ for $x{\in}C[0,t]$, where $\{v_1,{\cdots},v_r\}$ is an orthonormal subset of $L_2[0,t]$ and ${\sigma}$ and ${\rho}$ are the complex Borel measures of bounded variations on $L_2[0,t]$ and $\mathbb{R}^r$, respectively. We then investigate the inverse transforms of the function with their relationships and finally prove that the analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions, can be expressed in terms of the products of the conditional Fourier-Feynman transforms of each function.